

Easy Touch Scripting Manual

Version 2013.2.0
August 27, 2013

An employee owned company

Easy Touch Scripting Manual

Copyright 2013 by Cirris Systems Corporation
1991 W. Parkway Blvd.
Salt Lake City, Utah 84119-2026
U.S.A.

Introduction 1
What is Easy Touch scripting? .. 1
Enabling Scripting ... 2
Getting a Script ... 3
Different kinds of scripts ... 4

LUA Test Event Scripts 5
Overview .. 5
Required Syntax for a LUA Test Event Script ... 6
Selecting the LUA Test Event Script for a Test Program ... 7

EVT Test Event Scripts 8
Overview .. 8
Required Syntax for an EVT Test Event Script ... 9
Selecting the EVT Test Event Script for a Test Program ... 10
Parameter Types and Values ... 12

Component Scripts 13
Overview .. 13
Component Script Syntax ... 14
Parameter Types and Values ... 14
More Component Script Examples ... 15
Inserting a LUA Component into a Test Program.. 16

Custom Report Scripts 18
Overview .. 18
Setting up a Custom Report Script ... 18
Custom Report Syntax.. 19
Custom Script Example .. 19

Embedded Blocks 20
Who Should Read this Section ... 20
How Embedded Blocks are Implemented ... 21

Script Errors & Debugging 32
Common Script Errors .. 32
Debugging Methods ... 33

Cirris Functions 34
Cirris functions organized by category .. 34
Cirris Functions organized alphabetically .. 36
Date and Time Functions .. 38
Digital Input and Output Functions .. 41
File Functions ... 44
Low Level Function ... 48
Measurement and Test Functions .. 57
Printer Functions .. 74
Tester Information Functions .. 78
Test Information Functions ... 81
User Interface Functions ... 91
1100 Embedded File Functions .. 98
Preserved Lua 3.2 Functions .. 105
Unsupported Cirris Functions ... 106

Index 107

Table of Contents

You may download example scripts files and a PDF
version of this manual from the Cirris Community
Forum.

To do this:
1. In your web browser, type in the URL https://community.cirris.com.
2. Click Downloads on the top menu bar.
3. Click Documentation under Download Categories.
4. Find the downloads Search box in the upper right corner of the download page. In

this box type Easy Touch Scripting.
5. Click on either the Easy Touch Scripting manual or examples.
6. Click Download.

https://community.cirris.com/

1

Introduction

What is Easy Touch scripting?
You can use Easy Touch scripting on a Cirris Easy Touch tester or on a Cirris 1100 tester
that is controlled by a PC running the Cirris easy-wire software. An Easy Touch script will
typically not run on an independent 1100 Tester, or on a Cirris Touch1 tester. A Cirris
scripting language with some different commands is used for these applications.

By using scripting you can make the tester extremely flexible and customize a test process
to fit a unique task. The following list gives examples for using scripts:

• Create complex tests that are easy for line workers to use.
• Make highly customized reports or cable tags.
• Control external devices such as lamps, hold-down clamps, markers, etc.
• Test devices such as switches, gas fuses, zener diodes, bi-color diodes, etc.
• Verify color and lighting of LED’s.
• Display prompt messages.
• Hipot different nets at different voltages.

Easy Touch scripting is written in the Lua programming environment. Lua is a free
programming language often used to control factory equipment. In addition to the
standard Lua programming commands, Cirris has added its own programming commands
to Easy Touch scripting to provide the tools needed to control the Cirris cable tester. This
manual documents these tools. In addition to this Easy Touch Scripting Manual, use the
Lua 5.1 Reference Manual, which documents all of the general Lua programming
commands. You can find the Lua 5.1 Reference Manual at www.lua.org.

http://www.lua.org/

Introduction

Enabling Scripting
Scripting must be enabled before you run a script file on your tester. If scripting was
ordered with your tester, the scripting option should be checked on the tester’s options
label. You can find this label on the top front corner on the left side of the tester. If you are
enabling this option in the field, use a marker to check this label when Scripting has been
enabled.

You can verify or enable scripting for the Easy Touch Tester, or for the easy-wire software
you are using to control your 1100 Cirris tester by doing the following:
1. From the easy-wire main menu, select Utilities.
2. In the System Utilities box select Setup System Options.
3. Under the Tester Hardware tab, select Enable Features.
4. If enabled, scripting should be displayed in the installed features list as shown below. If

not enabled, enter the Feature Key Code received from Cirris, and press Install the
Feature.

If you are using an 1100 series tester, PC Control must also be enabled in the above
Enabled Features window.

Introduction

3

Getting a Script
Writing scripts can be challenging. You may choose to have Cirris write a script for you,
or modify an existing script for your application. For those who choose to write their own
scripts, having an aptitude for programming and previous programming experience is
highly recommended. You may download example scripts files from the Cirris
community forum. See the page after the table of contents for instructions on
downloading these examples.

Scripts are ASCII text files. You can write or modify a script using a text editor or a word
processor running in text mode. Many programmers prefer to use a text editor that is
optimized for the programming environment Notepad++ is a popular editing program
that can be downloaded for free. If using Notepad++, make sure to set the language
option to Lua for better programming clarity.

Whenever you are about to make major modifications to a script that has been
functioning, make sure to make a copy of the script to preserve the original file. When
developing a script, being able to quickly make and try script changes is critical. To this
end you may find it helpful to attach a keyboard to the Easy Touch tester to edit a script.
You may also store script files on a network where they can be accessed by the tester
and your programming station. When using easy-wire software to control an 1100
tester, you may copy the script files to any drive and directory that is accessible to the
PC running the easy-wire software.

Introduction

Different kinds of scripts
There are different kinds of scripts. The kind of script you use depends on the application,
and when the script executes. Each kind of script has a unique syntax and file extension
requirement. The kinds of scripts are summarized below and then treated in detail in the
following pages.

Test Event Scripts
Test Event Scripts execute when certain events happen during a test. A test event script
does not cause a test to pass or fail. One Test Event Script can be assigned to a test
program. There are two kinds of Test Event Scripts: “LUA” and “EVT.” Each of these Test
Event Scripts have different syntax requirements and file extensions. EVT scripts have
been developed more recently, and have the added flexibility of using parameters that can
be easily modified in the tester’s user interface.

Component Scripts
You can attach one component script to test program. However, the component script file
can have one or more custom components. After attaching the component script file to a
test, you can add its custom to the test in manner similar to how you can add test
instructions. Like test instructions, custom components must be correctly completed for a
test to pass. Therefore, a component script differs from other script types in that it can
cause the test to fail. Creating a custom component script can allow you to test standard
components to higher level or test electrical components and conditions that differ from
standard components.

Custom Report Scripts
The easy-wire software that controls the Easy Touch tester uses makes it easy to
customize and print a broad range of report and label options. However, sometimes even
this broad range of options may not be suitable. Custom report scripts give you full control
over the content, format and presentation of the printed documentation. Note that the
easy-wire reporting allows you to turn reporting on or off, or configure it differently for
different test programs. On the other hand, a custom report script can run each time a test
fails, each time a test passes, or after every test. If you need a custom report script for
select test programs, you can use a test event script for a custom report application.

5

LUA Test Event Scripts

Overview
A LUA Test Event Script is executed when one or more test events occur during the test
process. The easy-wire software uses a value to represent each of these events. When the
event occurs, the script passes the value to the script. The test events and their values are
shown in the table below.

A LUA Test Event Script says in essence, “When a test event happens, do the following thing
or things.” A LUA Test Event Script will not cause the test to pass or fail. If you want to test
custom electrical characteristics of a circuit, you should use a component (CMP) script
instead. Unlike CMP and EVT scripts, LUA Test Event Scripts accept no parameters.
Parameters allow you store values for the script, which can then be changed in the test setup
without modifying the script.

You can assign one test event script to a test program. A LUA Test Event Script must end
with a .lua file extension and must include the required syntax as shown in the following
section.

value LUA test event
1 The first test event occurs when the test program is loaded.
2 The second test event occurs when the low voltage test begins. The low voltage

test is the first test that is performed on a cable and always occurs.

If the Test Method is set to Signature Continuous Test, the low voltage test starts
when the operator attaches a cable assembly.
 - OR -
If the Test Method is set to Signature Single Test, the low voltage test starts when
the operator presses Start in the Test Window.

3 The third test event occurs at the end of all tests on a cable. This includes the low
voltage test, and if selected, the high voltage and intermittents test.

If the Test Method is set to Signature Continuous Test, the end of all tests happens
when the cable assembly is removed.
 - OR -
If Test Method is set for Signature Single Test mode, the end of the test happens
when the low voltage, and if selected, high voltage test are completed.

Lua Test Event Scripts

Required Syntax for a LUA Test Event Script
Every LUA Test Event Script must start by defining the function DoOnTestEvent. All other
functions in the script are called from the DoOnTestEvent function.
function DoOnTestEvent (event)
 if event == eventnumber then

 end
end

Note, a function definition must always end with an end statement. The easy-wire software
passes the value of event to the script when the LUA test events occur. See the table of LUA
test events and their values on the previous page.

Examples of a LUA Test Event Syntax

Here’s a short LUA test event script that brings up a window to congratulate the operator upon
loading the test program.

function DoOnTestEvent(iwhen)
 if iwhen == 1 then
 MessageBox(“Good job loading the test program”)
 end
end

Here’s a slightly longer LUA test event script that congratulates the operator at all three test
events.

function DoOnTestEvent(iwhen)
 if iwhen == 1 then
 MessageBox(“Good job loading the test program”)
 end
 if iwhen == 2 then
 MessageBox(“Good job starting the test”)
 end
 if iwhen == 3 then
 MessageBox(“Good job completing the test”)
 end
end

.

.

.

All other function calls
.
.
.

LUA Test Event Scripts

7

Selecting the LUA Test Event Script for a Test Program
You can select one Test Event Script for a test program. Before selecting the Test Event
Script, create the test program just as you would any other test program. To select a LUA
Test Event Script for a test program:

1. Edit the Test Program. In the test editor press the Set Test Defaults tab.
2. Press Select Test Event Script.
3. Press the Attach button. Remember, a LUA Test Event Script must have a .lua file

extension.

The script will load. Applicable error messages will be displayed.

4. Note: With Enable Script Changed Warnings selected in the window above, you will not
be able to load the Test Program using the script if the script changes. Instead a warning
window will be displayed. After you are through making frequent changes to a script, you
can use this selection to help ensure the integrity of the test event script used by the test
program.

5. Press OK.

8

EVT Test Event Scripts

Overview
An EVT Test Event Script can execute upon the test events shown in the table below. Each
event has an associated value. The easy-wire software passes this value to the script when
each of these events occurs.

Value EVT Test Event

1 The first test event begins when the test window is initially entered. The test
window is entered after the operator selects a test and presses Test in the main
menu.

2 The second test event occurs when the low voltage test begins. The low
voltage test is the first test that is performed on a cable and always occurs.

If the Test Method is set to Signature Continuous Test, the low voltage test
starts when the operator attaches a cable assembly.
 - OR -
If the Test Method is set to Signature Single Test, the low voltage test starts
when the operator presses Start in the Test Window.

3 The third test event occurs at the end of all tests on a cable. This includes the
low voltage test, and if selected, the high voltage and intermittents test.

If the Test Method is set to Signature Continuous Test, the end of all tests
happens when the cable assembly is removed.
 - OR -
If Test Method is set for Signature Single Test mode, the end of the test
happens when the low voltage, and if selected, high voltage complete.

4 The forth test event occurs when the test window is open and the test is waiting
to start. Note that this test event happens before each test cycle.

5 When the operator exits the Test Window to return to the main menu.

Unlike a LUA Test Event Script, an EVT Test Event Script accepts test parameters. The test
parameters are values that are passed to the script, but can be easily changed in the easy-
wire software’s test editor. This also allows you to use the same EVT test event script in
different test programs, but use different parameter values for each program as needed. For
more information on parameter types see page 12.

There can be only one LUA or EVT Test Event Script used in a test program. If using parent
child test programs, only the parent test program can use a test event script.

An EVT Test Event Script must end with an .evt extension and have the required syntax as
described as follows.

EVT Test Event Scripts

9

Required Syntax for an EVT Test Event Script
Every EVT script must have the following syntax.

evtEvent = {}
evtEvent.description = “description”
evtEvent.params = {
 {“param1name”, “param1type”, param1value},
 {“param2name”, “param2type”, param2value},

 {“paramNname”, “paramNtype”, paramNvalue}
}
function evtEvent.DoIt (event, “param1”, “param2”…)
 if event == value then

 end
end

Example of an EVT Test Event Syntax
Here is a short EVT Script that would greet the operator, Bob, when he loads a test.

evtEvent = {}
evtEvent.description = "Greet the operator"
evtEvent.params = {
 {"greeting", "string", "Hello Bob"}
}
function evtEvent.DoIt(ievent,sgreeting)
 if ievent == 1 then
 MessageBox(sgreeting)
 end
end

In this case the default value for the parameter greeting is Hello Bob. Maybe after several
months of using this script, Jane is the new operator. The default value, Hello Bob, can easily
be changed without modifying the script. Instead, the easy-wire Test Editor can be used to
change the parameter value in the test program as shown in the next section.

.

.

.

.

.

.

All other function calls
.
.

Record a brief script description
or title for the script. Always
enclose the description in quotes.

Parameters, if used in the script,
must be defined here. Optional
syntax is shown in grey.

The function evtEvent.DoIt must be
defined. The easy-wire software will pass
an integer value to event depending on
the test event. Parameters, if used, are
listed and correspond respectively to the
previous parameters definitions.

Use this line to begin to begin
the EVT Script.

An if-then statement is used to start the
function calls upon a test event. EVT Test
Events values are listed the table on page
5. The if-then statement ends with end.

sgreeting corresponds to parameter with
the name greeting defined above.

Note, there is no coma after the
last parameter definition.

When the operator loads the test, a 1 will
be passed to ievent.

The function definition must end with end.

EVT Test Event Scripts

Selecting the EVT Test Event Script for a Test Program

1. Edit the Test Program. In the test editor click the Set Test Defaults tab.
2. Press Select Test Event Script.
3. Press the Attach button. Remember, an EVT Test Event Script must have a .evt extention.

4. Select the script and press Open. Applicable error messages will be displayed. When the
script successfully loads the parameter editor will open. If Hello Bob were used for the
greeting parameter as in the preceding example, you would see the value as shown.

5. If desired, you could change “Hello Bob”. When you are satisfied with the value, press OK.
The value will be used whenever the test is used. It is also possible for no default value to
be used in the parameter definition. If no parameter is displayed, always enter a value
before pressing OK.

greeting

EVT Test Event Scripts

11

At any time you can change the value of the parameter by returning to the Select Test Event
Script Window and pressing Edit.

With Enable Script Changed Warnings selected, you will not be able to load the Test
Program using the script if the script changes. Instead, a warning window will be displayed.
After you are through making frequent changes to a script, make sure to check this selection
to help ensure the integrity of the test event script used by the test program.

6. Click OK in the window above.

EVT Test Event Scripts

Parameter Types and Values
The table below shows the parameters that may be used in a EVT Test Event script.

Parameter
Type

Ranges for
Default Values

Description

“capacitance” 10 pF – 100 uF
(10 pF increments)

Used for components that need a capacitance
measurement. For capacitances outside this range, use
the “number” parameter.

“current” (Approximations) Used to set the current that is applied to a test point.

0 = OFF, 1 = 3 uA
2 = 12 uA, 3 = 30 uA
4 = 110 uA, 5 = 376 uA
6 = 2 mA, 7 = 6 mA

“number” Floating point: maximum four
points before and after decimal

For components that need a numeric value. Also for
capacitances, percentages, resistances, and voltages
outside the range for these parameter types.

“percent” 1 – 99 For percentages outside this range, use the “number”
parameter.

“point” Number tag ties points together
for hipot tests: < 0 means do
not tie together, >= 0 means
group points in this component
with the same number tag
together for hipot tests.

Any one test point in a test program. This point can be a
fourwire point.

This type can tie nets together. Points and point lists can
also be tied together by assigning the same number tag.

“point list” < 0 = treat as a separate point
(default)
≥ 0 = tie all points with this
number tag together (can have
multiple number tags)

Multiple test points in a wirelist that are common to one
action.

This type can be used to tie nets together. Points and
point lists can also be tied together by assigning the
same number tag.

“resistance” .1 Ohms – 5 Megaohm Resistance of a component. For milliOhm, four-wire, and
values greater than 5Meg, use the “number” parameter.

“string” 30 characters, maximum ASCI text variables

“textlist” Allows the script to do different options depending on
your selection. When creating a textlist parameter type,
use text strings that will aid in identifying the test
parameter. When the selection is made, there will be an
index starting at one to identify which item in the list was
selected. To access your selection, inside the test
function use the first item in the input parameter list. For
example:
Button = {one ,two, three, four}
Button[1] = the position in the array
Button[2] = the text in that position

“voltage” 50 –1500, tester dependent High voltage applied to a test point or net. For other
voltages or setting external voltages, use the “number”
parameter.

13

Component Scripts

Overview

You can add one component script to a test program. However, a component script can
contain one or more “Lua Components”. You can use a Lua Component to test for a unique
characteristic on the tested assembly, which characteristic could not be tested with the
tester’s base capability. Just as the test instructions for wires, a Lua Component must be
correctly completed for a test to pass. Therefore, a Component Script differs from other script
types in that it can cause the test to fail.

Component Scripts can use test parameters just as EVT scripts. The test parameters are
values that can be used in the test, but can be easily changed in the easy-wire software’s test
editor. For more information on parameter types see page 12.

One you add a Component script to a test program you one or more of the script’s Lua
Components to the test program. In some instances you might even use the same Lua
Component multiple times with different parameters in a test program. You add Lua
Components to a test program in a similar manner to how you can add test instructions to a
test program. Lua Components execute after the other test instruction have completed.

Component scripts must end with a .cmp file extension and use a defined syntax format as
defined in the following section.

Component Scripts

Component Script Syntax
Each LUA component within a Component Script file must end with a .cmp extension and
have the required syntax as follows:

cmpCompName = {}
cmpCompName.description = “description”
cmpCompName.params = {
 {“param1name”, “param1type”, param1value},
 {“param2name”, “param2type”, param2value},

 {“paramNname”, “paramNtype”, paramNvalue}
}
function cmpCompName.test (param1, param2,… paramN)

 if value == goodvalue then
 return 0
 elseif value == badvalue then
 return 1, “failure”
 end
end

Parameter Types and Values
You can use the same parameter types and values in component scripts as you would in
EVT Event Scripts. See page 12 for a list of these parameter types and values.

.

.

.

.

.

.
Functions used to return value

.

.

This line defines LUA Component
name. Unique names are allowed,
but must start with cmp.

Use this line to record a brief script
description or title. Always
enclose the description in quotes.

Parameters, if used, are defined.
Always enclose the parameter
name and type in quotes.
Optional syntax is shown in grey.

This line begins the Component function
definition. The variables correspond
respectively to the parameters previously
defined.

if-then-elseif statements are used to pass
or fail the test depending on value.
Returning a single variable indicates the
LUA Component test passed.

value can be a measured test value or
represent a particular operator button push.

The function definition must end with end.

Note, there is no coma after the
last parameter definition.

Returning two variables fails the LUA
Component test. The string “failure” is
displayed in the test window.
 Complete the if-then-else statement with
end.

Component Scripts

15

Example
The following custom component has the operator do a visual inspection. If the cable doesn’t
look good, the operator can reject the cable.

cmpInspection = {}
cmpInspection.description = "Visual Inspection"
cmpInspection.params = {
 {"Message Text", "string", "Cable look good?"},
 {"YesButton", "string", "Yes"},
 {"NoButton", "string", "No"}
}
function cmpInspection.test(sMessage, sYes, sNo)
 iResult = MessageBox(sMessage, sYes, sNo)
 if iResult == 1 then
 return 0
 else
 return 1, "Visual Inspection Failed"
 end
end

More Component Script Examples
You may download example scripts files shown in the table below from the Cirris community
forum. See the page after the table of contents for instructions on downloading these
examples. To transfer the script files to the Easy Touch tester you may use a USB drive, or if
your Easy Touch is connected to a network, use a scripts folder on your network. Using a
shared a network will allow you to easily make changes at a network station and then evaluate
the results on an Easy Touch Tester that is connected to the network. Then when the script is
stable, you can copy it to the Easy Touch.

Hipot_pt_net.cmp Applies hipot to one or more nets. The parameters of this Component
allow you to select the points and hipot settings for this test.

LEDHC.cmp Allows you to select the current for a higher current LED.

CustomLED.cmp LED testing script

The parameters used in this
function correspond respectively to
the previous parameter definitions.

The parameters are used to present
a message, and the buttons yes
and no. The Message Box function
returns a 1 to iResult if the first
button is pressed; otherwise 2 will
be returned.

Description of the LUA Component.

The component function is
completed with an end.

Returning a single variable to the
function will pass this inspection
test.

Parameters are defined in this
section.

Name of this Lua Component is
cmpInspection

Returning two variables fails the
inspection test. The string “Visual
Inspection Failed” display in the
Test Window”

Component Scripts

Inserting a LUA Component into a Test Program
1. In the test editor click the Define Instructions tab.
2. Press Select Component Script.
3. In the LUA Script window press the Attach button.

4. Navigate to the desired Component Script File. Only files with a .cmp extension will be
displayed. Select the file and press Open. In the window below the Component Script
File, EveryTest, has been selected.

Note: With Enable Script Changed Warnings is selected, you will not be able to load the
Test Program using the script if the script changes. Instead a warning window will be
displayed. Use After you are through making frequent changes to a script, you can use
this selection to help ensure the integrity of the test program using the test program.

5. Press OK to accept the selected Component Script file.
6. In the Test Editor select the test instruction under which you’d like to insert the LUA

Component.
7. Change the component type to Lua Component and press Add Instruction.

Component Scripts

17

8. If there is more than one component in the LUA script file, select the appropriate
component using the pick box.

9. To change a parameter value double tap on the parameter line. A parameter value
window will appear. Select an appropriate value and press OK.

10. When you have set all the parameter values as desired, press OK at the LUA Component
Editor Window shown above.

Note: The OK button will be grayed out until you have entered a parameter value for
each of the parameters. In the example window above “Point List” has no default value.
A value must therefore be entered before the values can be accepted.

11. Press OK at the Select LUA Script window to exit back to the Test Editor.

Custom Report Scripts

Overview
The easy-wire software used on the Easy Touch tester makes it easy to customize and print
different standard reports and labels. However if you need to print a report or label outside
the standard easy-wire software’s capability, you can set up a Custom Report Script. Some
custom reports may be better created using an EVT Test Event Script. We describe the
advantages of the different report options below.

Standard Reports
The standard reports and labels created in the easy-wire software can be turned on, off, or
configured separately for each test program.

Custom Report Script
A Custom Report Script will execute for all test programs used on the tester. A Custom
Report Script can be setup to print after every good test, after every bad test, or after every
tests – whether it be good or bad. Again remember, Custom report scripts are system wide
applying to all test programs.

EVT Test Script
The advantage of using an EVT Test Script is that you have flexible scripting options, and
you can make the custom report or label for selected test programs. Additionally, an EVT
Test Script can allow you to print a custom report at the end of a test run.

Setting up a Custom Report Script
A Custom Report Script can have one of three file names – autogood.rpt, autobad.rpt or
autoall.rpt. The file name that is used determines when the Custom Report Script will run.
The script autogood.rpt prints results after a good test; autobad.rpt prints results after a bad
test; and autoall.rpt prints results after all tests. Again, remember Custom report scripts are
system wide applying to all test programs.

To use a custom report script, the custom file - whether it be auotgood.rpt, autobad.rpt,
autoall.rpt - must be in the appropriate folder location on the test system. For Vista and
Windows 7, the script file must be stored the report folder on the path
C:\Users\Public\Documents\Cirris\easywire\Report .

For older test systems using XP and 2000, the script file must be stored in the report folder
on the path C:\Documents and Settings\All Users\Documents\Cirris\easywire\Report .

Custom Report Scripts

19

Custom Report Syntax
.
function DoCustomReport()

 Gather report information
 Send report to printer

end

Custom Script Example
See the Cirris ftp site ftp://ftp.cirris.com/easytouch/scripts/ to see an example script file. The
file T1Rep.rpt at this ftp site creates a Touch 1 style report for the Easy Touch tester.

The function DoCustomReport() must be
included in your custom report script file. This
function is a basis for calling other script
functions to create and print your custom report

.

.

.

.

.

.

The DoCustomReport() function is completed
with an end.

ftp://ftp.cirris.com/easytouch/scripts/

20

Embedded Blocks

Who Should Read this Section
Intended audience
This section is intended for advanced scripting users or those with general programming
experience. This section will provide details of how the embedded script blocks are
implemented in order to make it easier to understand how to take full advantage of the
functionality available.

Why you might need to use Embedded Blocks
The Easy Touch Tester has two processors involved with scripting. One processor resides on
the PC motherboard; the other processor resides in the embedded system which directly
controls the tester hardware. Each of these processors has their own memory and Lua
environment. The PC processor is using a Lua 5.1 environment while the embedded processor
is using Lua 3.2.

In normal operation, when a script is started in easy-wire software, the script begins running in
the PC processor. Some of the Cirris measurement functions (such as
GetResistanceMeasurement) are executed in the embedded processor so that the embedded
system can directly control the tester hardware. When the PC processor script encounters such
a command it transfers control to the embedded processor. The PC script then waits for the
results of that function to return from the embedded processor. Each of these commands must
be transmitted over the communication channel between the two processors, which is very slow
compared to the execution speed of the processors.

In most scripts the time required to pass data between the PC and embedded processors is
unnoticeable, but in some cases a script may run slower because of the time required for this
data transmission. If such a function were executed only a few times during a script execution,
the operator would not recognize a noticeable slowdown. However, if the function were called
repeatedly for a hundred measurements (for the sake of getting an average, for example), the
operator could notice a pause when the script executes.

For this reason Easy Touch scripting allows the use of “embedded blocks”, in which an entire
block of script commands can be designated to run exclusively together in the embedded
processor. Using an Embedded Block can reduce significant data transmission and
substantially increase the execution speed of the script. Thus if a speed critical section of a
script is calling many Cirris measurement functions with little processing between them, using
Embedded Blocks may be a good choice.

Embedded Blocks

21

How Embedded Blocks are Implemented
Implementation
Embedded Blocks allow for user-defined blocks of code to execute in the embedded memory.
This can significantly speed up script execution when many tester hardware commands are
needed in tight loops. Before a script begins execution in the PC processor the script is
preprocessed and everything defined in an embedded block is sent to the embedded
processor’s Lua environment. Thus everything within an Embedded Block declaration is defined
in both environments including function definitions and variables. When an Embedded Block
function is encountered in the PC script the PC processor transfers control to the embedded
processor and waits for the function to return.

For example, an Embedded Block can be defined in the following manner:

-- {$block blockName}

-- {$end}

This syntax is all that is required to make use of Embedded Blocks. With this example any
functions defined in the Embedded Block will always execute in the embedded processor and
nothing else is needed. This behavior is likely sufficient for most new scripts. However,
Embedded Blocks have some additional functionality that may be useful for some new scripts
and for adapting legacy scripts to make use of Embedded Blocks.

This line designates the beginning of the
block. The syntax ‘-- {$block’ indicates the
beginning of the block while blockname is a
required, unique name to identify the block. .

.

.
Embedded Block functions

.

.

.

This line designates the end of the block.

.

.

.
PC processor functions

Functions defined outside the Embedded
Block will always execute in the PC
processor.

Embedded Blocks

There are times when it may be necessary, or advantageous, to execute an Embedded Block
function on the PC processor. For instance, a function which does some processing of
measurement results may be needed in script code that is run in the embedded processor, but
may also be useful for code that is running on the PC processor. You could define a second
function outside the Embedded Block with the same code, but such code is difficult to maintain.
A better solution is to have the function defined in one place only and then be able to specify if
the code should execute on the PC processor or the embedded processor. This behavior is
accomplished through special preprocessing which takes place before the script is run in the PC
processor.

When the preprocessor encounters a function defined in an Embedded Block, the function is first
sent to the embedded processor in its original form. Then, in the PC script, the function is
replaced with three functions which allow the function to be called in three different ways – the
original function name, an embedded name, and a PC name. The embedded name causes the
function to execute in the embedded processor while the PC name function will execute in the
PC processor. The original function name will call either the embedded version or PC version
depending on a user defined default behavior (described below).

As an example, consider the following code which represents the original script file before
running the preprocessor.

-- {$block embBlockName }

function MyFunction(a, b)
 -- function code
end

-- {$end}

Optional comment lines – used only to
make block more visible.

Required block syntax

Embedded Blocks

23

After preprocessing, the script will look like essentially like the following (though some details are
not shown to simplify the example):

Embedded Script

-- {$block embBlockName }

function MyFunction(a, b)
 -- original function code
end

-- {$end}

PC Script

-- {$block embBlockName }

function __embBlockName_MyFunction(a, b)
 -- original function code
end

function e__embBlockName_MyFunction(a, b)
 return -- call embedded version
end

function p__embBlockName_MyFunction(a, b)
 return __embBlockName_MyFunction(a,b)
end

myFunction = e__embBlockName_MyFunction

-- {$end}

This line reassigns the original function
name to point to either the embedded or
PC version depending on user specified
default behavior. Here it is being assigned
to the embedded version.

Original function renamed. This allows for
reassigning the original function name to
selectively point to embedded or PC
version.

Embedded name.

PC name.

Embedded Blocks

With this new version of the script the user has access to either the embedded version or the PC
version of the function. Based on the example above, to call the PC version of the function the
user would call

p__embBlockName_MyFunction(a, b)

and to call the embedded version the user could call either

e__embBlockName_MyFunction(a, b)

or more simply

myFunction(a, b)

since the default behavior allows for the original function name to call the embedded version. It
is important to remember, however, that these new function names are only available in the new
PC version of the script. Thus any function defined in an Embedded Block cannot use the
alternate function names. It is also worth noting that if you use the alternative function names in
your script code you will be referencing a function that does not exist until the EasyWire
preprocessor processes the script. This could cause problems if you are using any external Lua
syntax checking tools.

Important Notes
Because the code in an Embedded Block may execute on the embedded processor there are a
few important considerations to remember when writing code for Embedded Blocks. First,
because the embedded processor uses a Lua 3.2 environment, all code in an Embedded Block
must be Lua 3.2 compatible. This includes ensuring that functions are defined before being
called and not using newer Lua features that are not supported in 3.2 such as ‘for’ loops. A
second important note is that since the code may run on the embedded processor, functions
such as ‘MessageBox’, ‘DialogOpen’, and ‘PromptForUserInformation’ should not be used
because the dialog boxes will be sent to the embedded processor display, which may not exist
(in the case of an EasyTouch tester, for instance). These functions will cause the script to
appear to be ‘hung’ because the script is waiting for user input which the user cannot give.

Embedded Blocks

25

Global Variables

In addition to function definitions, global variables can also be defined in an Embedded Block.
This could be useful for updating an existing script to run faster on an Easy Touch Tester, but is
not advisable when writing a new script. When global variables are defined inside the
Embedded Block both the embedded processor and the PC processor will have a unique copy
of the variable, and thus the variable will no longer be truly global. If the variable is serving as a
constant value that is never updated this is acceptable behavior and will allow both processors
to see the constant value. However, if a global variable gets updated by one processor the
change will not be represented in the other processor, which may cause unexpected behavior.
Of equal importance to remember is that global variables not defined in an Embedded Block will
not be defined in the embedded processor and could provide unexpected ‘nil’ values if used in
functions defined in the Embedded Block. The preferred way to transfer information between
functions that may execute in different processors is simply to use the parameters and return
values of those functions.

If you think there is a compelling reason to use global variables inside an Embedded Block you
will have to provide a mechanism to ensure that the global variables in both processors remain
synchronized. Some example code for such behavior is provided below.

-- {$block embBlockName}

myGlobal = 0

function ChangeGlobal()
 myGlobal = 100
end

function UpdateMyEmbeddedGlobal(NewValue)
 myGlobal = NewValue
end

function GetMyEmbeddedGlobalValue()
 return myGlobal
end

-- {$end}

function My_PC_Function()
 myGlobal = 5

 UpdateMyEmbeddedGlobal(myGlobal)

 ChangeGlobal()

 myGlobal = GetMyEmbeddedGlobalValue()
end

Synchronizing Functions – defined
inside the Embedded Block to give
access to embedded version of
myGlobal

myGlobal = 5 before execution
myGlobal = 100 after execution

Embedded Blocks

Changing default behavior

The default behavior for the original function name can be changed by adding a second, optional
parameter to the block definition. By adding a ‘,1’ following the block name the default behavior
will change such that the original function name will call the PC version of the function rather
than the embedded version. The only change in the preprocessor output is on the line which
reassigns the original function name as illustrated below. Note, the yellow highlighted text below
is the only change from the script example on page 23.

Embedded Script

-- {$block embBlockName }

function MyFunction(a, b)
 local c
 c = a + b
 return c
end

-- {$end}

PC Script

-- {$block embBlockName,1 }

function __embBlockName_MyFunction(a, b)
 -- original function code
end

function e__embBlockName_MyFunction(a, b)
 return -- call embedded version
end

function p__embBlockName_MyFunction(a, b)
 return __embBlockName_MyFunction(a,b)
end

myFunction = __embBlockName_MyFunction

-- {$end}

With the 2nd parameter of the block
definition set to ‘1’ the original function
name is now set to refer to the PC version
of the function.

Embedded Blocks

27

The behavior of having the original function name refer to the embedded version of the function
is the default when no parameter is provided following the block name. This behavior can also
be achieved by providing a ‘0’ as the second parameter, as illustrated below.

-- {$block embBlockName,0}

The most likely scenario for changing the default behavior of the block is when changing an
existing script to work more efficiently on an Easy Touch Tester. In most scripts only a limited
portion of the script will need to be put into an Embedded Block for speed improvement.
However, the functions placed in the Embedded Block may call other functions that are used
throughout the rest of the script which will need to run in the PC most of the time. In this case it
may be beneficial to change the default behavior to have all Embedded Block functions run in
the PC processor and then explicitly call the embedded versions in the few select cases where
they are needed.

Calling sub-functions
In general there are two types of code in a script – code defined inside an Embedded Block, and
code defined outside an Embedded Block. Functions defined in an Embedded Block may call
other functions also defined in an Embedded Block. Code execution can also flow between
code defined outside a block and code defined inside a block. Script execution always begins
with code defined outside a block which executes on the PC processor. When execution moves
from code defined outside a block to code defined inside a block we may say execution is
‘entering’ the block. Similarly, when execution flows from code defined inside a block to that
defined outside the block we may say execution is ‘exiting’ the block. If more than one
Embedded Block is defined in a script it is also possible to exit one block and enter directly into
another block.

There are two ways in which execution can enter a block from code defined outside a block –
calling the PC version of a block function or calling the embedded version of a block function.
The path that is taken to enter the block determines on which processor that code will run. Once
execution is started on a given processor it is desirable to continue execution on the same
processor until exiting the block.

Embedded Blocks

For instance, consider functions functionA and functionB, which are defined in an Embedded
Block in the following example.

-- {$block emb}

function functionB()
 …
end

function functionA()
 …
 functionB()
end

-- {$end}

…
PC_function()
 …
 P__emb_functionA()
 …
end
…

In the function defined outside the block, PC_function, it is desirable to call functionA to run on
the PC processor to save the overhead of transferring execution to the embedded processor.
However, functionA calls functionB, which is also defined in the Embedded Block. If functionB
executes in the embedded processor, there will be no benefit to calling functionA to run on the
PC processor. Thus, the desired behavior in this case is to have functionB also execute on the
PC processor since that is how functionA was called. However, if a different path of execution is
taken in which functionA is running on the embedded processor, it would be equally inefficient to
have functionB run on the PC processor. Therefore, the desired behavior is that when code
execution enters a block it will continue executing on the same processor until it exits the block.
This behavior is accomplished through some details of the script preprocessing which were
hidden earlier. These details are explained in the following example for those who want to
understand more fully, however, it is not essential to understand the details of how this
accomplished and the example may be skipped. The important point to understand is that when
calling code in an Embedded Block the code will execute on the same processor until it leaves
that block even if other block functions are called.

Recall the original script file example used above.

-- {$block embBlockName }

function MyFunction(a, b)
 -- function code
end

-- {$end

Embedded Blocks

29

The preprocessor adds an extra enable flag to track entering and exiting the block as illustrated
in the full preprocessor output below (new details highlighted). The yellow highlighted text below
shows changes from the script example on page 23.

Embedded Script

-- {$block embBlockName }

function MyFunction(a, b)
 -- original function code
end

-- {$end}

PC Script

-- {$block embBlockName }

__embBlockName_enable = true

function __embBlockName_MyFunction(a, b)
 -- original function code
end

function e__embBlockName_MyFunction(a, b)
 if __embBlockName_enable then
 return -- call embedded version
 else
 return __embBlockName_MyFunction(a, b)
 end
end

function p__embBlockName_MyFunction(a, b)
 __embBlockName_enable = false
 local temp = {__embBlockName_MyFunction(a,b)}
 __embBlockName_enable = true
 return unpack(temp)
end

myFunction = e__embBlockName_MyFunction

-- {$end}

Examining the preprocessor output reveals that the enable flag defaults to true – which enables
execution to take place on the embedded processor. If execution enters a block by calling the
PC version of the function this flag is cleared - which keeps execution from being transferred to
the embedded processor for further Embedded Block function calls. It is also important to note
that the enable flag is tied to the block name. This means that if more than one Embedded
Block is defined in your code and you call functions in another block the enable flag will not
affect the second block. For this reason it is best practice to keep all Embedded Block code in a
single block or at least not allow interactions between blocks whenever possible. It is also worth
noting that the enable flag is not intended for the user to access directly in a script.

Enable flag is set to allow for processing
on the embedded processor in future calls.
The default state for the enable flag is true.

Checks enable flag – executes on
embedded processor if flag is true,
otherwise calls PC version.

Enable flag is cleared to keep execution on
PC processor.

No changes are made in embedded script.
Thus once execution in a block begins in
the embedded processor all function calls
will execute on embedded processor.

The temp = {…} and return unpack(temp)
simply ensure that all return values are
returned properly.

Embedded Blocks

Summary Examples
Consider the following code example for getting the average value of a measurement, which
illustrates some of the principles presented in this section.

-- {$block emb}

function CalculateAverage(sum, samples)
 return (sum / samples)
end

function AverageResistance(myPoint1, myPoint2)
 local i = 0
 local sum = 0

 while i < 100 do
 sum = sum + GetResistanceMeasurement(myPoint1, myPoint2)
 i = i + 1
 end

 return CalculateAverage(sum, 100)
end

-- {$end}

function My_PC_Function()
 local myPoint1 = 'J1-001'
 local myPoint2 = 'J1-002'
 local fAverageValue = 0
 local fAverageTime = 0
 local i = 0

 while i < 5
 fAverageValue = AverageResistance(myPoint1, myPoint2)
 fAverageValueSum = fAverageValueSum + fAverageValue
 i = i + 1
 end

 fAverageValueSum = fAverageValueSum + p__emb_AverageResistance(myPoint1, myPoint2)

 return p__emb_CalculateAverage(fAverageValueSum / 6)
end

Since the embedded block will run
in embedded processor (Lua 3.2
environment), this function must be
defined before being used later in
the block.

This calls the embedded version of
AverageResistence which will call
the embedded version of
CalculateAverage.

The CalculateAverage function in
the embedded block is called to run
on the PC processor.

No second parameter after block
name, original function name will
refer to embedded version.

Calls PC version of AverageResistence
which will call the PC version of
CalculateAverage.

Embedded Blocks

31

The following example executes the same as the one on the previous page, but uses the
opposite default behavior for the Embedded Block. The yellow highlighted text below shows the
changes from the previous script.

-- {$block emb,1}

function CalculateAverage(sum, samples)
 return (sum / samples)
end

function AverageResistance(myPoint1, myPoint2)
 local i = 0
 local sum = 0

 while i < 100 do
 sum = sum + GetResistanceMeasurement(myPoint1, myPoint2)
 i = i + 1
 end

 return CalculateAverage(sum, 100)
end

-- {$end}

function My_PC_Function()
 local myPoint1 = 'J1-001'
 local myPoint2 = 'J1-002'
 local fAverageValue = 0
 local fAverageTime = 0
 local i = 0

 while i < 5
 fAverageValue = e__emb_AverageResistance(myPoint1, myPoint2)
 fAverageValueSum = fAverageValueSum + fAverageValue
 i = i + 1
 end

 fAverageValueSum = fAverageValueSum + AverageResistance(myPoint1, myPoint2)

 return CalculateAverage(fAverageValueSum / 5)
end

This calls the embedded version of
AverageResistence which will call
the embedded version of
CalculateAverage.

The CalculateAverage function in
the embedded block is called to run
on the PC processor.

1 as second parameter after block
name, original function name will
refer to PC version.

Calls PC version of AverageResistence
which will call the PC version of
CalculateAverage.

32

Script Errors & Debugging

Common Script Errors

“ERROR: Script file <script file> changed”
This message appears because the script was changed and the “Enable Script Changed
Warnings” option was selected when the script was setup. This option used to help ensure the
integrity of the test program using the test script.

To remove the message your can either:

• Change or replace the script so it is back to its original state.
• Edit each test program that uses the script. In the Test Editor either unselect the “Script

Changed Warnings” option or reselect the changed script file. Before reselecting the script
file, make sure to note any parameters that are used so you can re-enter them accurately
after reselecting the script.

The Event or Component Script file does not run
In this scenario you have tested cables, but the script file will not run for one of two reasons:

• The Script file has not been selected in the test’s setup.
• The script file contains syntax errors, which need to be corrected. To correct these errors,

see Debugging Methods on the next page.

Custom Report Script does not print
Potential reasons include:

• The Custom Report Script is in the wrong folder.
• The Custom Report Script has the wrong file name.
• The printer is not connected to the tester.
• The wrong printer (serial or parallel) is connected to the tester.
• The printer is off-line.
• The printer is turned off.
• The printer is out of paper.

Script Errors & Debugging

33

Debugging Methods

Once you have written or edited a script, you may find the syntax is not correct or it simply does
not work. Here are a few techniques you can use to get your script running.

• Put the script on your network where it can be accessible to both the tester and a network

workstation. That way you can evaluate your script changes quickly. Make sure “Enable
Script Changed Warnings” is not selected. That way you won’t have to re-select the script
after each script change. If a network is unavailable to an Easy Touch tester, make and
evaluate script changes on a USB drive. Another option is to attach a keyboard to the Easy
Touch tester.

• Use the Cirris Message Box function to display the value of variables at one or more points in

the script’s execution.

• Revert to the simplest thing that you can get to work. Comment out code, or save a copy of

the script so you can delete sections of the code. Introduce more script functionality to find
script errors.

• After you’ve eliminated all the syntax errors, continue to test the script to ensure it works as

intended and maintains its functionality under different scenarios.

34

Cirris Functions

Cirris functions organized by category
Date and Time Functions
Delay ...38
GetDateAsText 38
SetDelayTimeInMilliseconds 39
TimePassed 39
TimerClose 39
TimerDone 40
TimerReset 40

Digital Input and Output Functions
GetUserOutputStates 41
ReadUserInputStates 42
SetUserOutputStates 43

File Functions
Cirris.ChDir ..44
Cirris.CloseDir44
Cirris.CopyFile44
Cirris.CurrentDir45
Cirris.DirExists45
Cirris.MkDir ..45
Cirris.OpenDir46
Cirris.OpenFileDialog 46
Cirris.OpenFolderDialog46
Cirris.ReadDir.....................................47
Cirris.RmDir47

Low Level Function
Sink / Unsink48
Turn On Relay49
Source / Clear Source Vector50
Read / Clear Read Vector51
Set Current ...51
Measure Voltage53
Route Current to Relay53
Set All Default55
Set High Current56

Measurement and Test Functions
GetCapMeasurement 57
GetRelCapMeasurement 58
GetResistanceMeasurement 59
GetResistanceMeasurement4W 60
GetTotalCapMeasurement 61
HipotNetTiedToPoint 62
HipotNetTiedToPoints 63
HipotPointMask 67
LearnCable.. 68
TestWirelist 71
UseChildWirelist 72

Printer Functions
Cirris.EndPrintJob 74
Cirris.GetNumPrinters 75
Cirris.GetPrinterNamesByIndex 75
Cirris.NewPage 75
Cirris.Print ... 76
Cirris.SetPrinter 76
Cirris.StartPrintJob 76
SendTextToParallelPrinter 77

Tester Information Functions
Get4WPairPt 78
GetHardWareVersion 78
GetProbedPin 78
GetRawPointNum 78
GetPtType .. 79
GetTimeAsText 79
GetTimeAsInteger 80
GetSystemInfoAsText 80

Cirris Functions

35

Cirris functions organized by category continued

Test Information Functions
Cirris.BadCount 83
Cirris.CableID 83
Cirris.GetAdapters 81
Cirris.GoodCount 83
Cirris.LotID ... 83
Cirris.RunBadCount 83
Cirris.RunGoodCount 83
Cirris.RunTotalCount 83
Cirris.StationID 83
Cirris.TotalCount 83
GetCableStatus 84
GetComponentCount 84
GetComponentDetails 85
GetErrorSignature 84
GetErrorText .. 86
GetNumberTested 86
GetPinLabel ... 87
GetWirelistInfoAsText 88
IsSPCDataCollectionOn 90
TWLGetErrorText 90

User Interface Functions
Cirris.GetWrappedText 94
Cirris.HideBackgroundImage 91
Cirris.PressDoneButton 91
Cirris.ShowBackgroundImage 92
DialogCheckBtn 93
DialogClose .. 93
DialogOpen .. 94
MessageBox .. 94
PlaySound .. 96
PromptForUserInformation 94

1100 Embedded Memory Functions
_appendto 98
CopyEmbeddedFileToPc 99
_copyfile ... 99
CopyPcFileToEmbedded 99
DirUtils .. 100
_openfile 101
_read .. 101
_readfrom 102
_remove .. 102
_rename 103
_rename 103
_write .. 103
_writeto ... 104

Cirris Functions

Cirris Functions organized alphabetically
_appendto ..98
_copyfile ...99
_openfile ... 101
_read ... 101
_readfrom .. 102
_remove .. 102
_rename .. 103
_rename .. 103
_writeto ... 104

Cirris.BadCount 83
Cirris.CableID 83
Cirris.ChDir ..44
Cirris.CloseDir44
Cirris.CopyFile44
Cirris.CurrentDir45
Cirris.DirExists45
Cirris.EndPrintJob74
Cirris.GetAdapters81
Cirris.GetNumPrinters75
Cirris.GetPrinterNamesByIndex75
Cirris.GetWrappedText94
Cirris.GoodCount 83
Cirris.HideBackgroundImage
Cirris.HideBackgroundImage91
Cirris.LotID ...83
Cirris.MkDir ..45
Cirris.NewPage75
Cirris.OpenDir46
Cirris.OpenFileDialog
Cirris.OpenFileDialog 46
Cirris.OpenFolderDialog46
Cirris.Print ..76
Cirris.PressDoneButton 91
Cirris.ReadDir.....................................47
Cirris.RmDir47
Cirris.RunBadCount83
Cirris.RunGoodCount83
Cirris.RunTotalCount83
Cirris.SetPrinter76
Cirris.ShowBackgroundImage 92

Cirris.StartPrintJob 76
Cirris.StationID 83
Cirris.TotalCount 83
CopyEmbeddedFileToPc 99
CopyPcFileToEmbedded 99

Delay ... 38
DialogCheckBtn 93
DialogClose 93
DialogOpen 94
DirUtils ... 100

Get4WPairPt 78
GetCableStatus 84
GetCapMeasurement 57
GetComponentCount 84
GetComponentDetails 85
GetDateAsText 38
GetErrorSignature 84
GetErrorText 86
GetHardWareVersion 78
GetNumberTested 86
GetPinLabel 87
GetProbedPin 78
GetPtType 79
GetRawPointNum 78
GetRelCapMeasurement 58
GetResistanceMeasurement 59
GetResistanceMeasurement4W 60
GetSystemInfoAsText 80
GetTimeAsInteger 80
GetTimeAsText 79
GetTotalCapMeasurement 61
GetUserOutputStates 41
GetWirelistInfoAsText 88

HipotNetTiedToPoint 62
HipotNetTiedToPoints 63
HipotPointMask 67

Cirris Functions

37

Cirris Functions organized alphabetically continued

IsSPCDataCollectionOn90
LearnCable

LearnCable 68
LowLevelCmd48

Measure Voltage53
MessageBox94

PlaySound ..96
PromptForUserInformation94

Read / Clear Read Vector51
ReadUserInputStates 42
Route Current to Relay53

SendTextToParallelPrinter77
Set All Default55
Set Current ...51
Set High Current56
SetDelayTimeInMilliseconds 39
SetUserOutputStates 43
Source / Clear Source Vector50
Sink / Unsink48

TestWirelist 71
TimerClose 39
TimerDone 40
TimePassed 39
TimerReset 40
Turn On Relay 49
TWLGetErrorText 90

UseChildWirelist 72

Note: Some Cirris functions previously used in scripting for Cirris 1100 and Touch 1
testers are no longer supported in Easy Touch Scripting (See Unsupported Cirris
Functions page 106). Some Lua 3.2 functions previously used in Cirris scripts continue
to be supported (See Preserved Lua 3.2 Functions on page 105).

Date and Time Functions

Date and Time Functions

Delay

Delay (delayseconds)

Sets a delay for tester functioning in seconds. Use this function when controlling relays
using the low level commands and a delay is needed to let the tester catch up. This
function acts like a NOOP operation. Also, see the SetDelayTimeInMilliseconds function.

For example the following lines of code set a 5 second delay
iDelayInSeconds = 5.0
Delay(iDelayInSeconds)

Another example, Delay(.1) delays tester functioning for 100 milliseconds.

GetDateAsText

GetDateAsText (select)

This function returns the current date information as a text string. You can select the
format for the returned date information as indicated in the table below.

Example
sCurrentDate = GetDateAsText (1)

If July were the current month, the function would return the string “5”.

date information returned select

function describes itself nothing

Month only MM (no preceding 0) 1

Day only DD (no preceding 0) 2

Year only YYYY 3

Year only YY 4

Full Date MM/DD/YYYY 5

Full Date DD/MM/YYYY 6

Date and Time Functions

39

SetDelayTimeInMilliseconds

SetDelayTimeInMilliseconds(delay)

This function sets a delay time for tester functioning in milliseconds. See also the function
Delay for setting a delay time in seconds.

Examples:

iInputNum = 5
SetDelayTimeInMilliseconds(iInputNum)

The function will delay all functioning on the tester for 5 milliseconds.

SetDelayTimeInMilliseconds(10)

The function will delay all functioning on the tester for 10 milliseconds.

TimePassed

TimePassed (timer)

This function returns the elapsed time since a timer specified by the handle timer was
opened or reset. The timer handle is integer. Time is returned as an integer value
represented in milliseconds.

Example:
local iTimerHandle = TimerOpen(500)
SetDelayTimeInMilliseconds(300)
local iTimePassed1 = TimePassed(iTimerHandle)
if iTimePassed1 > 200 then
 MessageBox(“READY TO START”)
end
TimerClose(iTimerHandle)

This example will create a timer with a 500 millisecond timeout. If the time has been greater
than the 200 msec, a message box will display. The timer will then be terminated.

TimerClose

TimerClose(timer)

This function closes the timer specified by the handle timer, freeing one of the ten available
timers. Timers are created using the function TimerOpen.

Date and Time Functions

TimerDone

TimerDone(timer)

This function returns 0 if the timer specified by the handle timer has timed out, or the
function returns 1 if more time is remaining. A timer is created using the function
TimerOpen.

TimerReset

TimerReset (timer)

This function restarts the timer using the original timeout delay that was determined when
the timer was created. The function uses the timer’s handle timer, an integer value
created by the TimerOpen function.

Digital Input and Output Functions

41

Digital Input and Output Functions

GetUserOutputStates

GetUserOutputStates

The full format of this function is:

output1[, output2,… output8)] = GetUserOutputStates (select1[, select2,… select8])

The function returns the state of the digital outputs on the tester’s I/O port. If desired, you
can specify multiple outputs and this function will return their respective states. This
function will return a 0 if the output is low, or 1 if the output is high.
The state of the output port is determined by using the SetUserOutputStates function or by
using the setup for Digital Outputs on the tester.

select
(integer)

IO Connector
Pin

1 5
2 6
3 10
4 11
5 7
6 8
7 7
8 8

Power +5 Vdc, 100 mA, max
Output
Output
Power +5 Vdc, 100 mA, max

Ground
Ground

Input (External Switch)
Input (Hipot Safety (Switch)

Input
Input

Output
Output
Output
Output

IO
Connector

9
10

11
12

13
15

14

1
2

3
4

5
6

7
8

Digital Input and Output Functions

ReadUserInputStates

ReadUserInputStates

The full format of this function is:

state1, state2, state3, state4 = ReadUserInputStates(1, 2, 3, 4)

This function returns the state (on or off) of one or up to all four digital inputs on the digital
I/O port. Each returned input state corresponds respectively to the specified input. A 0 is
returned if the input is on (conducting). A 1 is returned if the input is off (not conducting).
Each input is specified by an input select number as shown in the table below.

The figure below shows the digital IO port as viewed from the
back of the tester.

The settings for External Start Switch and Hipot Safety Switch affect this function if they
are turned on.

Examples:

externalStartSwitchState = ReadUserInputStates(1)

The function will get the state of the external start switch.

io1,io2,io3,io4 = ReadUserInputStates(1,2,3,4)

The function returns the values of all four inputs to io1, io2, io3, and io4.

input
select number

description

1 Input 1, External Start Switch (Pin 1)

2 Input 2, Hipot Safety Switch (Pin 2)

3 Input 3, User-Defined (Pin 3)

4 Input 4, User-Defined (Pin 4)

Digital Input and Output Functions

43

SetUserOutputStates

SetUserOutputStates

The full format of this function is:
SetUserOutputStates(outnum1, set1, outnum2, set2, … outnum8, set8)

This function sets the digital outputs on the user I//O port to a particular low or high logic
state. This function takes up to six parameter pairs. In each pair, the first parameter
outnum specifies which output to be set. The relation between output numbers and the
io connector pin out on the back of the tester is shown in the table and figure below. The
second parameter, set specifies whether the output is set on or off. If this parameter
value is 0 the output is set on (conducting); if 1 the output is set off (not conducting). Note
that the function GetUserOutputStates allows you to read the state of the outputs.

Examples:

iDigitalOutput1 = 1
iOutputState1 = 0
iDigitalOutput2 = 2
iOutputState2 = 1
SetUserOutputStates (iDigitalOutput1, iOutputState1,iDigitalOutput2, iOutputState2)

The function above will set the pin 5 output on, and the pin 6 output off.

SetUserOutputStates(6,0)

The function will turn on the Bad Light led.

output
number

description
Output pin outs

1 Pin 5
2 Pin 6
3 Pin 10
4 Pin 11
5 Pin 7 - Good Light
6 Pin 8 - Bad Light
7 Pin 7
8 Pin 8

File Functions

44

File Functions

Cirris.ChDir

Cirris.ChDir (x:\\directory)

This function changes the current directory to the drive, path and directory specified by the
input string x:\\directory. This allows the drive, path and directory to not have to be
restated in subsequent file functions.

The function also returns two outputs, result and error as shown.

result, error = Cirris.ChDir (x:\\directory)

If the function is successful in making the directory, it returns 1 to result and nil to
error. If unsuccessful, the function returns a 0 to result and a string describing the error
to error.

Example:

iCopyGood, sCopyError = Cirris.ChDir (“c:\\junk”)
The function attempts to make the current directory c:\junk for further file functions. If
successful, 1 will be returned to iCopyGood and nil to sCopyError.

Note: When using Easy Touch Scripting to control an 1100 tester, this command affects
only the current directory of the computer controlling the tester, not the directories in the
embedded memory of the tester.

Cirris.CloseDir

Cirris.CloseDir (handle)

This function closes the current directory that is identified by a handle previously specified
by the Cirris.OpenDir function. The handle input to this function is a string.

Example:

DirHandle=Cirris.OpenDir (“c:\\junk”)
Cirris.CloseDir (DirHandle)

The functions above open and close the directory c:\junk.

Cirris.CopyFile

Cirris.CopyFile (x:\\source, x:\\destination)

This function copies a source file from the drive and path specified to the destination with
the specified drive and path. Both the source and destination are specified as strings.

For example,
Cirris.CopyDir (“c:\\Cirris\\Data”, “c:\\Company\\Data”)

File Functions

45

Cirris.CurrentDir

Cirris.CurrentDir

Returns a string for the value of the current directory. The current directory is set
previously set using the Cirris.ChDir function. This function will also return result and
error as shown in the full function definition below.

result, error, = Cirris.CurrentDir

If the function is successful in making the directory, it returns 1 to result and nil to
error. If unsuccessful, the function returns a 0 to result and a string describing the error
to error.

For example,

Cirris.ChDir (“c:\\junk”)
sCurDir = Cirris.CurrentDir

Makes sCurDir equal to c:\junk.

Cirris.DirExists

Cirris.DirExists (x:\\directory)

Returns 1 if the directory on the given path exists or 0 if it doesn’t.

For example, iDirThere = c:\\ProgramFiles\\Cirris\\Mydir
returns a 1 to iDirThere if the directory c:\ProgramFiles\Cirris\Mydir
exists.

Cirris.MkDir

Cirris.MkDir (x:\\directory)

Creates a new directory as specified. If the directory given in the path does not yet exist,
Cirris.MkDir attempts to create it. Cirris.MkDir returns 1 if it successfully creates all
necessary directories, 0 if it could not create a needed directory.

For example, iDirMade = Cirris.MkDir (c:\\junk)
if successful, makes the directory c:\junk and returns a 1 to iDirMade.

File Functions

Cirris.OpenDir

Cirris.OpenDir (x:\\directory, [files, subdirectories])

Returns a handle for the specified directory. The handle can be used for the
Cirris.ReadDir. The optional input mask allows you to specify a string such as *.txt to limit
the available files of the opened directory. If optional input subdirectories is set to 0
subdirectories will not be available. If subdirectories is 1 or is unused, subdirectories
are available. After opening and using a directory, use the CirrisCloseDir function to free
memory resources.

For example, iJunkHandle=Cirris.OpenDir (“c:\\junk”)
opens the directory c:\junk and returns the directory handle to iJunkHandle.

Cirris.OpenFileDialog

Cirris.OpenFileDialog

This function opens a dialog box so the user can browse to and select a file. To select a
file the user clicks the file and clicks OK. The function returns the path and name of the
selected file as a string.

Cirris.OpenFolderDialog

Cirris.OpenFolderDialog

This function opens a dialog box so the user can browse to and select a folder. To select
a folder the user clicks on a folder and clicks OK. The function returns the path and name
of the selected folder as a string.

File Functions

47

Cirris.ReadDir

Cirris.ReadDir (handle)

This function provides information on the contents of a directory. The directory must be
referenced by handle. Previous to using Cirris.ReadDir, use the function Cirris.OpenDir to
return handle. The Cirris.ReadDir function is used in a while loop. Each time the function
executes it attempts to read one entry of a directory. The function returns the name of a
file or directory, and returns 0 for a file or 1 for a directory. After reading all of the entries
of a directory, Cirris.ReadDir returns a nil value to the directory name.

Examples:

iDirHandle, sDirError = Cirris.OpenDir("C:\\Users\\Public\\Documents")
sDirEntries = ""
bDone = 0
 while bDone == 0 do
 sReadName, bIsFolder = Cirris.ReadDir(iDirHandle)
 if sReadName == nil then
 bDone = 1
 else
 sDirEntries = sDirEntries..Format("Name: %s, Folder: %d\r\n", sReadName, bIsFolder)
 end
 end
MessageBox(sDirEntries)

The code above opens the directory Documents. The Cirris.ReadDir function is used
inside a while loop to read and identify each of the directory entries. Each entry name and
its folder/file designation is added to the string sDirEntries using the Lua Format function.
The MessageBox function is then called to display this string. Each file name will have a 0
displayed next it; each folder will have a 1.

Cirris.RmDir

Cirris.RmDir (directory)

Removes the specified directory.

For example, Cirris.RmDir (“c:\\junk”) removes the directory c:\junk.

Low Level Function

48

Low Level Function

LowLevelCmd

The Low Level command allows you to control the bare internal workings of the tester to
extend its testing methods. These low level commands are designed for use by a very
experienced programmer or engineer. Read the entire section thoroughly before
attempting to use these functions. After running a script that has executed any of the low
level commands, you should call LowLevelCmd (9) to return the tester to a known state.
This is the appropriate cleanup function.

Critical: While using these function to test complex circuitry, never connect an outside
power supply over 5.5 volts to the testers test points. If you break this rule, you will void
the tester's warranty and damage the tester. If you follow this rule, it is impossible for the
commands listed below to damage the tester.
Sink / Unsink

Low Level Function: Sink / Unsink
Sink means pull the point to ground. You can sink as many points as you like but you
have to call this function for each point you sink. Once a point is sunk, it remains sunk until
you clear it. The low level function format to sink or unsink a test point is:

result, error = LowLevelCmd(command, point, set)

where the inputs and outputs are defined as follows:

Example:
result = LowLevelCmd(1,"J1-001", 1)
This example sinks point J1-001.

command point set result error

1 = Sink or
Unsink Point

Sink means pull
the point to
ground.

Text string containing the point
as a default or custom label
OR
Integer containing the point
where J1-001 = 1, J3-001 = 65
(The number increments the
same as an AHED-64 adapter).

0 = Unsink
1 = Sink

0 = error
1 = no error

nil = No error
1 = Bad point
5 = Bad
command #

Low Level Function

49

Turn On Relay

Low Level Function: Turn On Relay
This low level command allows you to turn on a relay that controls a scanner point. Why
would you turn on a test point relay? The test point relays switch out the analog hardware
on a scanner point and connect the point to the high voltage system. The high voltage
hardware can be used for hipot testing or measuring capacitance. The current source can
be routed through the high voltage system, allowing you to apply current to more than one
point at a time for complex measurements.

Notes:
a. You can turn on as many relays as you want but you have to call this function for each

point. The relay remains on until you turn it off.
b. You cannot directly measure the voltage on a point when the relay is turned on for that

point.
c. It takes time for a relay to turn on. You can turn on a lot of relays and then call Delay

(0.010) to give the relay's contact time to move before performing any measurements.

The low level function format to turn on or off a relay is:

result, error = LowLevelCmd(command, point, set)

where the inputs and outputs are defined as follows:

Example:
result = LowLevelCmd(2, 3, 0)
This example turns off the relay connected to point, J1-003.

command point set result error

2 = Turn
Relay On or
Off

Text string containing the
point as a default or
custom label
OR
Integer containing the
point where J1-001 = 1,
J3-001 = 65 (The number
increments the same as
an AHED-64 adapter).

0 = Off
1 = On

0 = error
1 = no error

nil = No error
1 = Bad point
2 = Bad integer
5 = Bad
command #

Low Level Function

Source / Clear Source Vector

Low Level Function: Source / Clear Source Vector
This low level command is needed when you want to measure devices that are nonlinear
and require a fixed current, or when you want to source one point and measure voltage on
another and therefore cannot use the resistance measurement command.

Note: Only one point can be connected to the current source at a time. Whenever you
pick a new point, the current is removed from any prior point. This command doesn't
actually turn on the current source but simply connects it to the point you choose. It does
not affect the current source just the current source vector.

The low level function format to source clear a vector is:

result, error = LowLevelCmd(command, point, set)

where the inputs and outputs are defined as follows:

Example:
result = LowLevelCmd(3, "J3-001", 1)
This example sources the point, J3-001.

command point set result error
3 = Source or
Clear Point

Text string containing the
point as a default or
custom label
OR
Integer containing the point
where J1-001 = 1, J3-001
= 65 (The number
increments the same as an
AHED-64 adapter).

0 = Clear
source
vector.
1 = Source

0 = error
1 = no error

nil = No error
1 = Bad point
5 = Bad
command #

Low Level Function

51

Read / Clear Read Vector

Low Level Function: Read / Clear Read Vector
This low level command operates similar to the source function. It points the read vector
(vmpoint) to the desired point but does not actually read anything.

Note: Currently, there is no reason to call this function. It is here for future use.

command point set result error

4 = Read or
Clear Point

Text string containing the
point as a default or
custom label
OR
Integer containing the point
where J1-001 = 1, J3-001
= 65 (The number
increments the same as an
AHED-64 adapter).

0 = clear
1 = read

0 = error
1 = no error

nil = No error
1 = Bad point
2 = Bad integer
5 = Bad command #

Low Level Function

Set Current

Low Level Function: Set Current
This low level command simply turns on/off the current source and sets its value. It does
not send the current anywhere. Use the SetSourceVector function to send the current
through the normal analog channels or use the RouteCurrentToRelay and
TurnOnRelay functions to send the current through the relays. The input currents given
below are approximate. The actual current (in amperes) is returned in the result.

The low level function format to set current is:

result, error = LowLevelCmd(command, level)

where the inputs and outputs are defined as follows:

Example:
fCurrent = LowLevelCmd(5,7)
This example turns on 6 mA of current.

command level result error

5 = Set Current
On or Off

(approximations)
0 = current off
1 = 3 uA
2 = 12uA
3 = 30 uA
4 = 110uA
5 = 376uA
6 = 2mA
7 = 6mA

Floating point
number of the actual
current in amperes
0 = error

nil = No error
2 = Bad integer
4 = Current out of range
5 = Bad command #

Low Level Function

53

Measure Voltage

Low Level Function: Measure Voltage
The greatest accuracy for this low level command will be obtained if at least one of the
points is at two volts or less with respect to ground. This is always the case if that point is
sunk. See LowLevelCmd 1 on how to sink a point.

If you are using relays to route the current to a point, you cannot directly measure its
voltage using this command. Add an external connection to tie that point to another point
on the tester so you can measure its voltage there.

Note: YOU CANNOT MEASURE ANY VOLTAGE GREATER THAN 5.5 VOLTS.
APPLYING EXTERNAL VOLTAGE TO THE TESTER CAN DESTROY IT.

The low level function format to measure voltage is:

result, error = LowLevelCmd(command, highpoint, lowpoint)

where the inputs and outputs are defined as follows:

Example:
fVoltage = LowLevelCmd(6, 3, "J1-001")
This example will return the measured voltage between J1-003 and J1-001 if using an
AHED-64 adapter. The first point given is expected to be the high point similar to the "red"
lead on a voltmeter.

command highpoint lowpoint result error

6 = Measure
voltage
between two
points
OR
one input to just
measure the
voltage
on that point

For each of two points:
Text string containing the
point as a default or
custom label
OR
 Integer containing the
point where J1-001 = 1, J3-
001 = 65 (The number
increments the same as an
AHED-64 adapter).

Floating point
number
containing the
measured
voltage (positive
or negative) in
volts.
0 = error

nil = No error
1 = Bad point
2 = Bad integer
5 = Bad command

Low Level Function

Route Current to Relay

Low Level Function: Route Current to Relay
Use this low level setting if you want to perform four-wire resistance measurements using
the low current sources, or if you want to source more than one point at a time. The
current does not normally route through the relays. For a normal resistance
measurement, leave the current in its default state.

Use the Delay (0.010) command after calling this command to allow time for the
current source to be switched over.
The normal resistance measurement and other functions won't work properly if you
forget and leave the current routed through the relays.

The low level function format to route current to relay is:

result, error = LowLevelCmd(command, through)

where the inputs and outputs are defined as follows:

Example:
result = LowLevelCmd(7, 1)
This example will route the current through the relays.

command through result error

7 = Route
Current through
Source Vector
or through
Relays

0 = through normal source vector (default
state)
1 = through relays
The tester normally vectors the current
through the source vector.
5 = SCSI scripts require that we test without
relays connected to the current source.
1500V hardware has a wire connecting
them unless we turn on a relay on the HV
card connecting the HV source to the
outside.

0 = error
1 = no error

nil = No error
1 = Bad point
2 = Bad integer
5 = Bad
command #

Low Level Function

55

Master Clear

Low Level Function: Master Clear
Use this low level setting to unsink and turn off relays for all points. It disconnects the
current source from the test points. It does not affect where the current is routed (to
relays).

The low level function format for Master Clear is:

result, error = LowLevelCmd(command)

where the inputs and outputs are defined as follows:

Example:
result = LowLevelCmd(8)
This example will unsink and turn off relays for all points.

Set All Default

Low Level Function: Set All Default
Use this low level setting to reset the current source in addition to the Master Clear setting.
Use this function to return the tester to its normal operating mode. It is a good idea to call
this after finishing a script containing low level commands so the tester does not get
confused with any stuff set up within the script. Also, use this command in the middle of a
script to restore the hardware to a default state. This function does not affect any digital
I/O or the serial port.

The low level function format to set all default is:

result, error = LowLevelCmd(command)

where the inputs and outputs are defined as follows:

Example:
result = LowLevelCmd(9)

This example will reset the tester for further testing.

command result error

8 = Master Clear 0 = error
1 = no error

nil = No error
5 = Bad command #

command result error

9 = Set All Defaults 0 = error
1 = no error

nil = No error
5 = Bad command #

Low Level Function

Set High Current

Low Level Function: Set High Current
Use this low level setting to set the high current source. It can be used to measure highly
inductive devices using the high current source since you can put in your own stabilization
time. Using the High Current Source requires that you instruct the High Voltage card to
route the current onto the HV buss. You also need to engage relays to source and sink the
current. This means the current must flow out of and back into the High Current Source
electronics. Due to the restrictions for using this command, it should be used with Cirris
Systems’ engineer direction only. Contact Cirris for application details.

Note: The high current source must only be used for short time periods. Turn it off as soon
as you are done measuring or it can damage the circuit on the high voltage card.

The low level function format to set all default is:

result, error = LowLevelCmd(command)

where the inputs and outputs are defined as follows:

Example:
local fCurWanted = 1.0 – default current to 1 amp
if aCur[1] = = 2 then
 fCurWanted = 0.25 – want current at ¼ amp
end
local fCur = LowLevelCmd(12, fCurWanted) – turn current on
local fVolts, err = LowLevelCmd(6, wSenseHi, wSenseLo)
if (err ~= nil) and (err ~= 0) then
 error(“Invalid test point(s)”)
end
LowLevelCmd(12, 0) – turn current off
LowLevelCmd(9) – reset tester to default state

This function sets the high current source to ¼ amp. It measures the voltage and then
turns the high current source off. It then resets everything back to a default state.

command current result error
12 = Set High
Current

0 = Turn current
source off
or
Floating point number
containing the current
in amperes. Current
must be > .009 & <
1.1 amps

-1 = Current source
off
or
Floating point
number containing
the measured
current in amps
or
0 = error

nil = No error
1 = Bad point
2 = Bad integer
5 = Bad command #
6 = Bad float

Measurement and Test Functions

57

Measurement and Test Functions

GetCapMeasurement

GetCapMeasurement (point1, point2)

The full format of this function is:
capacitance, error = GetCapMeasurement (point1, point2)

This function returns the measured capacitance between two points. The points can be
integer values representing system points, or strings representing point labels. Depending
on whether the points are valid, the function returns capacitance and error as shown in
the table below.

It is good practice to check that error value is nil before using it in further calculations.

Example:
sPoint1 = "J1-001"
sPoint2 = "J2-005"
(fCapacitance, iError = GetCapMeasurement(sPoint1, sPoint2)
if(iError == nil) then
 MessageBox("Capacitance between %s and %s is %.2f nF”, sPoint1, sPoint2, fCapacitance/1e-9)
end

In the example, GetCapMeasurement returns the measured capacitance value between "J1-
001" and "J2-005" to fCapacitance. It checks that the input points are valid, and then
displays a message box with the measured capacitance value.

 capacitance error

If the input points are valid Floating point number representing
the capacitance measurement

Nil

If the input points are not valid 0 -99

Measurement and Test Functions

GetRelCapMeasurement

GetRelCapMeasurement (shield, reference)

Use this function to identify that a shield is in a given position. Cable shields are in close
proximity to other many nets in a cable; hence shields have higher capacitance relative
to the other wires in the cable.

This function measures the capacitance between a test point, which you believe is
connected to the shield, to all other cable nets. This function also measures the
capacitance of another test point, you believe can be used as a reference of a wire in the
cable. Finally, this function divides the shield measurement by the reference
measurement to return a floating point number representing the ratio. For example, if a
shield were five times more capacitive than the reference point, the function will output a
floating point number of about 5. The function also returns value that verifies the
selected shield and reference points are valid.

The full function definition is as follows:

ratio, valid, = GetRelCapMeasurement (shield, reference)

The value of ratio can be between a floating point number between 0.01 and 100. If one
of the points is invalid, the ratio will be zero and valid will return -99. If both points are
valid, valid will return nil. The inputs shield and reference are string inputs
representing any system points (such as 35 and 87), default labels (such as J2-003 and
J3-22), or custom point labels (such as Shield and Brown wire).

Example
sShieldPoint = "J1-026"
sReferencePoint = "J1-005"
fRatio, myResult = GetRelCapMeasurement(sShieldPoint, sReferencePoint)

The function above will find the ratio of capacitance of a shield with respect to the
reference point, J1-005. The shield point is a point tied to the shield. The reference point
is used as a point within the shield.

Measurement and Test Functions

59

GetResistanceMeasurement

GetResistanceMeasurement (point1, point2)

This function returns the measured resistance value between two points. The returned
resistance measurement is returned as a floating point number. The input point1 and
point2 must be strings representing any system point (such as “35” or “87”), a default
label (such as “J2-003”, or “J3-22”), or a custom point label (such as “Brown wire” or
“Shield”).

The full function definition is:

resistance, valid = GetResistanceMeasurement (point1, point2)

If one or both of the input points is invalid, the function returns 0 for the resistance
measurement and returns a -99 for valid. If both points are valid, the function returns nil
for valid. It is good practice to check the valid is nil before using the resistance
measurement in further calculations.

Example1
myPoint1 = "J1-001"
myPoint2 = "J2-005"
fMeasuredValue, myResult = GetResistanceMeasurement(myPoint1, myPoint2)

The function will return the measured resistance value between "J1-001" and "J2-005" in
fMeasuredValue. The result, myResult, will be nil since there is no error.

Example2
local fStrapRes = GetResistanceMeasurement(VPlusStrap, ConnectingStrap)
if fStrapRes > 1.0 then
 print("AD5P-68A Adapter Not Found")
end

The function gets the measured resistance value to check if the adapter strapping is
correct.

See the function GetResistanceMeasurement4W to get measured resistance values
between two four-wire points.

Measurement and Test Functions

GetResistanceMeasurement4W

GetResistanceMeasurement4W (point1, point2)

This function returns the measured resistance value between two 4-wire test points.
Note that each of the 4-wire points should be designated as a 4-wire point in the wire list,
and be physically connected to a 4-wire force or 4-wire sense mate. Note also, the tester
also has requirements as to which test points can be used as 4-wire force and 4-wire
sense points.

The returned resistance measurement is returned as a floating point number. The input
points point1 and point2 may be either a force or sense points, but each must have its
four wire mate. The input points must be strings representing any system point (such as
“35” or “87”), a default label (such as “J2-003”, or “J3-22”), or a custom point label (such
as “Force1” or “Force3”).

The full function definition is:

resistance, valid = GetResistanceMeasurement4W (point1, point2)

If one of the input points is not a valid 4-wire point, the function returns 0 to resistance
and returns a -99 for valid. If both points are valid, the function returns nil for valid.
It is good practice to check that valid is nil before using the resistance measurement in
further calculations.

Example

my4WPt1 = "J1-003"
my4WPt2 = "J1-005"
fMeasuredValue, myResult = GetResistanceMeasurement4W(my4WPt1, my4WPt2)
if myResult == nil then
 MessageBox(“4W Resistance Value is:”..fMeasuredValue)
end

The function will return the measured four-wire resistance value between "J1-003" and
"J1-005" in fMeasuredValue. myResult will be nil since there is no error.

Frequently you may use the GetPtType and Get4WPair functions in conjunction with this
function. See the function GetResistanceMeasurement to do a standard resistance
measurement between two test points.

Measurement and Test Functions

61

GetTotalCapMeasurement

GetTotalCapMeasurement (pointlist)

The full format of this function is:
capacitance, error = GetTotalCapMeasurement (pointlist)

This function returns the total capacitance between one or more points specified in
pointlist and all other points of the device under test. The point list is a string with
multiple points separated by a space. Points can be integer values representing system
points, or strings representing point labels. Depending on whether the points are valid,
the function returns capacitance and error as shown in the table below.

It is good practice to check that value of error is nil before using it in further
calculations.

Example:
sPoints = “J1-003 J1-005”
fCap, iError = GetTotalCapMeasurement(sPoints)
if iError == nil then
 MessageBox(Format("Point: %s, Cap: %0.1f pF", sPoints, fCap / 1e-12))
else
 MessageBox(Format("Point/s: %s is/are not valid", sPoints))
end

If the specified points J1-003 and J1-005 are valid, a message box will display the
capacitance between these points and all other points in the device under test. If the
specified points are invalid, a message box will display the invalid points.

 total capacitance error

If the input points are valid Floating point number representing
the capacitance measurement

Nil

If the input points are not valid 0 -99

Measurement and Test Functions

HipotNetTiedToPoint

HipotNetTiedToPoint

This function hipots one of the points of a net and returns the leakage resistance value
and the test results of the hipotted net. All points of the DUT outside the net are held at
ground while the net is hipotted.

The function HipotNetTiedToPoints can perform the same task as this function, or
apply hipot to multiple points one at a time. Inputs and outputs and outputs are identical
to both functions, with the exception that function HipotNetTiedToPoint only allows you
to input a single point. Since HipotNetTiedToPoints is more versatile, we suggest
using it rather than this function. See function HipotNetTiedToPoints for more
information.

Measurement and Test Functions

63

HipotNetTiedToPoints

HipotNetTiedToPoints

This function hipots one point or multiple points. Each point may be an isolated point
such as an unused connector contact, or one point of a larger net on the tested device. If
the point is part of a net, all points in the net will be hipotted. This function can be used to
hipot multiple nets simultaneously. While a hipot is applied to the point or points, all other
DUT points are held at ground. This ensures the hipotted point or points are sufficiently
isolated from other nets. The function returns the leakage resistance and the test results
of each hipotted point.

If you want to use this function to apply hipot to only one or to certain nets in a tested
device, turn off hipot in the test program. This function will apply hipot even with high
voltage testing turned off in the test program. If the optional high voltage parameters for
this function are not specified, the function will use the hipot settings used in the test
program.

You may choose one of three different formats depending on the high voltage testing
complexity and whether the tester has AC voltage capability. The advanced format
allows to control all the high voltage settings you can control in the easy-wire software.
When using the advanced settings, note that the DW Voltage must be equal to or higher
than the IR voltage. Additionally, the IR voltage must be set sufficiently high for the
tester to measure some IR resistances. Using the test window to try advanced settings
will ensure the settings are valid. The three different formats are as follows:

Simplified Format
result, measured = HipotNetTiedToPoint(point [,voltage, insulres, dwell, maxsoak]

Advanced DC Format
result, measured = HipotNetTiedToPoint(point, [voltagetype, DWVvoltage, DWVcurrent,
 dwell,IRvoltage, IRinsulres, timegoodfor, soaktime, soakuntilgood])

Advanced AC Format
result, measured = HipotNetTiedToPoint(point, [voltagetype, frequency, DWVvoltage,
 DWVcurrent, dwell,IRvoltage, IRinsulres, timegoodfor, soaktime, soakuntilgood])

Inputs and outputs to these functions are defined in the following tables.

inputs input description
point This input is a string representing the test point to be hipotted. The test point

can be specified as an adapter test point as in “J1-0017”, or as the test point
label such as “RED WIRE”.

voltage This input is a floating point number representing the DC high voltage applied
during both the Dielectric Withstand (DW) test and Insulation Resistances (IR)
test.

Measurement and Test Functions

Inputs continued

inputs input description
voltagetype This input is a string representing the voltage type, either AC or DC, applied

during the DWV test. The string value is either “AC” or “DC”.
frequency If AC is specified for voltagetype, use frequency to specify the AC

frequency in terms of hertz. This input can be specified as 25, 30, 50 or 60.
If DC is specified for voltage type, no frequency input is used.

DWvoltage This input is a floating point number representing voltage applied during the
Dielectric Withstand (DW) Test. DWvoltage can be specified as any within
the high voltage range of the tester. The tester will only allow a DW voltage
that is equal to or higher than the IR voltage.

DWcurrent This input is a floating point number that represents the maximum current in
terms of mA that can flow into the hipotted net during the Dielectric
Withstand (DW) test.

dwell If used with a DC Dielectric Withstand (DW) Voltage, this input is a floating
point number (0.01 to 120) that represents the time in seconds that high
voltage is applied to each net during the DWV test.
If used with a AC Dielectric Withstand (DW) Voltage, this input is a integer
representing the number of AC cycles that are applied to each net during the
DWV test. The range is 1 to 7200 with a frequency of 60 Hertz is used.
However, the range varies depending on the selected frequency.

IRvoltage This input is a floating point number that represents the voltage that is
applied during the Insulation Resistance (IR) Test. The range for this
number is determined by the high voltage capability of the tester.

IRinsulRes This input is a floating point number that represents the minimum resistance
in terms of ohms allowed between unintended connections. The range for
this value is 5,000,000 to 1,000,000,000.

timegoodfor This input is a floating point number that represents the duration of the
Insulation Resistance (IR) Test in terms of seconds. The range for this input
is .002 to 120.

soaktime This input Is a floating point number that represents the time in terms of
seconds high voltage is applied to stabilize the measurement before doing
the Insulation Resistance (IR) Test. The range for this input is .002 to 120. If
soak until good is turned on, the actual soak time may be less.

soakuntilgood This input is set to either 0 or 1. If set to 0, the Soak Until Good setting is off
meaning the IR Voltage will be applied for the entire soak time. If set to 1,
Soak Until Good is on, meaning once the cable has reached a passing
insulation resistance (IR) test threshold, the soak will terminate and the IR
test time will start.

Measurement and Test Functions

65

Examples:

iResult = HipotNetTiedToPoints("J1-001")

This example hipots the net tied to the point, J1-001, using the high voltage parameters in
the test program. The variable iResult will contain the test result.

iResult, fMeasResis = HipotNetTiedToPoints("Blue", 50, 5000000,30)

This example uses the simplified format to hipot the net tied to the custom test point label,
Blue. It uses the inputs which are independent of the settings in the test program. High
voltage Is set 50 volts, insulation resistance to 5M ohms, and duration to 30 seconds. No
soak time was given so it will be set to zero. The variable iResult will contain the test
result and fMeasResis will contain the measured leakage resistance.

Output Output Description
result 0 = Passed Test

1 = Has leakage
2 = Overcurrent
3 = Dielectric Failure
99 = Other Failure
100 = Invalid Test Point
110 = * Invalid Frequency
111 = * Invalid DWV Voltage
112 = * Invalid DWV Max. Current
113 = * Invalid DWV AC Duration
115 = * Invalid IR Voltage
116 = * Invalid IR Insulation Resistance
117 = * Invalid IR Good For
118 = * Invalid Soak
119 = * Invalid Soak Until Good

* = If these errors occur, the hipot test will not be performed.

measured Floating point number representing the measured leakage resistance
OR
0 for some RESULT1 errors (2, 3, 99)

Measurement and Test Functions

sPoints = "J1-001 J1-002 J1-003"
fVoltage = 50.0
fHipotInsRes = 10000000
fDuration = 0.100
fMaxsoak = 0.010

local iDNum = DialogOpen("Warning: High Voltage")
local iErr, fRes =
HipotNetsTiedToPoints(sPoints, fVoltage,
fHipotInsRes, fDuration, fMaxsoak);
DialogClose(iDNum)

local sErr
if iErr == 1 then
 sErr = format("Has leakage (%i M ohms)", fRes/1000000)
elseif iErr == 2 then
 sErr = "Overcurrent"
elseif iErr == 3 then
 sErr = "Dielectric Failure"
elseif iErr ~= 0 then
 sErr = format("Unexpected error #%i", iErr)
end

if iErr ~= 0 then
 MessageBox(sErr)
end

This example hipots the points using optional parameters, which are independent of high
voltage test settings in the test program. A high voltage warning message will display
during the hipot. If an error occurs, a message box will display the error.

Measurement and Test Functions

67

HipotPointMask

HipotPointMask

When high voltage testing is turned on, high voltage is applied to each of the nets
defined in the test program. This function allows you to mask a point that would
normally be high voltage tested in the test program. If you use this function to mask one
point of a net, no other point of the net will have high voltage applied to it during the high
voltage test.

While you can use this function to subtract points from the tester’s list of points that will
be high voltage tested, you can also use this function to add points back to this list. Note
however, that un-checking the setting Hipot All Adapter Pins (Not just Connection),
means that unconnected test points in the DUT will not be in the tester’s list of points to
be tested. You cannot use this function to mask these points on.

The full format for this function is:

hipotpoints, invalidpoints = HipotPointMask (select [,testpoints])

The optional input testpoints is a string of the point or points that can be added to hipot
point list when the input select is 1. On the other hand, testpoints will be subtracted
from the hipot list when select is 0. The input select is an integer value that directs
the function as follows:

Note the function can return hipotpoints, a string value of the points to be high voltage
tested. Additionally the function can return invalidpoints, a string of the points from
the hipot list that are invalid because they are not defined for the test. Test points can
be specified by their connector points, or by their test point label.

Examples:

sNewHipotPoint = HipotPointMask (0, J1-013)

Point J1-13 is removed from the tester’s existing list of points to be high voltage tested.
The points that will be tested are returned to the string variable sNewHipotPoint.

If select equals, the function will:
0 Subtract point or points from the hipot list
1 Add point or points to hipot list
2 Subtract all points from hipot list
3 Add all points to hipot list

Measurement and Test Functions

LearnCable

LearnCable

Use this function to learn a cable that is connected to the tester. The cable is learned as
a child wirelist and saved to the tester’s embedded memory.

The full format for this function is:

result, error = LearnCable([1, filename,][2, description,][3, testparameters,]
 [4, learncomponents,][8, noconnectlearn])

The function can return two outputs. The output result, is a text string containing
messages. The output error is a text string containing errors.

To control learn settings, the following optional inputs may be used to the function:

If no optional inputs are given, the function will learn a cable with the following test
settings:

filename = untitled.wir
cable description = last learned
connection resistance = 10 Ω
lv insulation resistance = 100k Ω
hipot = off
components to learn = no
Learn with event or custom component scripts = no
learn if no connections = yes

The functions CopyPcFileToEmbedded and CopyEmbeddedFileToPc are often used in
conjunction with the LearnCable function.

Examples:
sResultMessage, sErrorText = LearnCable (1,”batch1.wire”, 4, 1)
This example will learn the cable and save the wirelist as batch1.wir. The cable will be

1, filename String filename specifies a test wire list file for the learned cable.
This name cannot be the same as the wirelist currently in
memory.

2, description String description specifies a description for the cable.
3, testparameters String testparameters specifies the low and high voltage

parameters used for the test.
4, learncomponents Integer learncomponents specifies the components types learned

in the test. 1 = resistor, 2 = capacitor, 4 = diode,
8 = twisted pair, 11 = all but diodes, 15 = all

8, noconnectlearn If noconnectionlearn is the integer 0, the learn will not occur if no
connections are found. If greater than 0, the learn will happen
even if no connections are learned.

Measurement and Test Functions

69

learned with the default low voltage hand high voltage parameters. It will also learn
resistors.

sResultMessage, sErrorText = LearnCable(3,“connection resis 5
ohm\nlv insulation resis 10k ohm\nhipot voltage 1000V\ninsulation
resis 500 M ohm\nhipot duration 0.100 sec\napply hipot to all
adapter pins”)

In this example, the cable will be learned with the supplied low and high voltage settings.
The default wire list file name and cable description will be used.

MicroLan

MicroLan

The full format for this function is:
result = MicroLan(input, [param])

Use the MicroLan function to talk to Dallas Memory tokens using the MicroLan protocol.
See EEPROM to talk to an I2C like a 24LC00. Note: 1100 testers do not support this
function.

param param description result

Nothing Function description

1, DataPt, GroundPt Setup

2 Cleanup – Disconnects from device.

3 Read a byte from the memory token using
MicroLan protocol.

Returns byte read

4, Data Write a byte to the memory token.

5 iPresent. 1(yes) or 0(no)

6, NumChars DS1993 specific command: Read a text
string from memory. Skips over ROM bytes.

7, Data, NumChars DS1993 specific command: Write a text
string to memory.

8, SpecPin=
1(J1),2(J3),etc

Prepare to communicate to special pin. Only used internally
by Cirris.

Measurement and Test Functions

Examples:

The following example sets up the Dallas DS1993 (or DS1994) chip. It then checks to
see if it is present. If it is present, it writes the text "Hello There Fred" and reads it back
out.

MicroLan(1, dataPt, gndPt) -- setup
isPresent = MicroLan(5) -- is present
if isPresent == 1 then
outtextxy(2,20,"Is attached ")
MicroLan(7, "Hello There Fred", 17) -- write text
local theText = MicroLan(6,80) -- read text
outtextxy(2,21,theText)
else
outtextxy(2,20,"Not attached ")
end
MicroLan(2) -- cleanup

The following example verifies the chip is attached to the tester, reads the product code
identifying the part type and the first byte of the product serial number. See the Dallas
Semiconductor product documentation for the bytes to send to your components to get
the data you want out.

MicroLan(1, dataPt, gndPt) -- setup
isPresent = MicroLan(5) -- is present
if isPresent == 1 then
outtextxy(2,18,"Is attached ")

MicroLan(4, 51) -- write data byte and read ROM command(33h)
theProductCode = MicroLan(3) -- read data byte.
theFirstSerNumByte = MicroLan(3) -- read data byte.
else
outtextxy(1,18," Not attached ")
end
MicroLan(2) -- cleanup

Measurement and Test Functions

71

TestWirelist

TestWirelist

The full format for this function is:
result = TestWirelist (testnum)

This function performs one of the three tests on the wirelist of the loaded test program.
The input, testnum, is an integer number that identifies which of the three tests to
perform as shown in the table below.

The function returns result, an integer that identifies the results of the test as shown in
the table below.

If the test fails, you can also use the function TWLGetErrorText to return the error text
that relates to the value of result.

Use the function UseChildWirelist to load the child wire list before calling TestWirelist to
test. When TestWirelist is used to perform a high voltage test, the high voltage test is
performed on all the nets. If you want to hipot one or selected nets, use the functions
HipotNetTiedToPoint or HipotNetTiedToPoints. The TestWirelist function does not affect
SPC Data Collection or the cable test counters.

Examples:
local iTestVal = TestWirelist(3)
The function will perform the low voltage and components test on the current wirelist.

local iTestVal = TestWirelist(255)
The function will perform all tests (low voltage, components, high voltage) on the current
child wirelist.

See also the example in the function, UseChildWirelist.

testnum test
3 LV test only

4 HV test only

255 LV, Components, & HV tests

 result test

0 Test Passed
3 LV tested failed (includes components test)
4 HV test failed

Measurement and Test Functions

UseChildWirelist

UseChildWirelist

result = UseChildWirelist(wirelist)

This function has two formats. In the format shown above the UseChildWirelist function
loads a wire list from memory or disk. The function TestWirelist can then be called to test
the wire list. The input wirelist is a string that defines an optional path and the wire list
name. The function returns 0 to result to indicate the wire list loaded successfully, or a
nonzero integer if the wire list failed to load.

UseChildWirelist(stop)

In this format, the function will stop using the wire list, and depending on the integer
value of stop, either leave the wirelist in memory or free the wire list from memory as
shown below.

This function allows you to load multiple child wire lists into memory where they can be
quickly recalled and used at one at a time. After finishing using all the wire wirelists,
remove all of the wire lists from memory by calling this function again.

Example 1

iCouldntLoad = UseChildWirelist(sChildWLFilename)

This example will load the named wire list contained in the string, myChildWLFilename and
make it the current wire list running on the tester.

stop Description
0 Stop using the current child wire list but leave it in memory.

1 Stop using the current child wire list and free the memory.

Measurement and Test Functions

73

Example 2

TestArray = {"test1.wir", "test2.wir", "test3.wir" }
iNumTests = 3
iTesting = 1
while iTesting == 1 do
iButtonNum = MessageBox("Test all", "Yes", "Done")
if iButtonNum == 1 then
iTestIndex = 0
while iTestIndex < iNumTests do
MessageBox(format("Ready to test # %i", iTestIndex+1))
-- display the test number so user can get ready
iLoadFailed = UseChildWirelist(TestArray[iTestIndex])
-- make it current, loading wirelist from disk or memory as needed
if iLoadFailed ~= 0 then
MessageBox("Couldn't load wirelist")
else
iTestResult = TestWirelist(255) -- perform all tests
if iTestResult ~= 0 then
sErrors = TWLGetErrorText(iTestResult)
MessageBox(sErrors) -- Show them what failed
end
UseChildWirelist(0)--Leave in memory, to get quickly next time
end
end
else
iTesting = 0 –- Done, will cause tester to exit loop
end
end
 iTestIndex = 0
 while iTestIndex < iNumTests do
UseChildWirelist(TestArray[iTestIndex]) -- make it current
UseChildWirelist(1) -- free it from memory
end

This example will loop through the child wirelists: test1.wir, test2.wir and
test3.wir. Test1.wir will be loaded and if no errors occur during loading, testing will
be done using test1.wir. After testing, the child wirelist will be left in memory for
quick access in the future. The script will continue for each of the child wirelists. At the
end of loading and testing all the child wirelists, each child wirelist will be loaded and
freed from memory.

Printer Functions

74

Printer Functions

Notes on Printing
When formatting strings to print, the Cirris print functions in this section allow for either
the c-like or decimal escape codes such as those in the following table:

Refer to the 5.1 Lua Manual for more information on formatting strings.

Printer Status Codes
Some Cirris print functions return an integer to reflect the printer status. The meaning of
these integers is shown table below.

Cirris.EndPrintJob

Cirris.EndPrintJob()

Ends the print job. Used after Cirris.StartPrintJob and Cirris.Print.

c-like code decimal code description
\n \10 new line
\f \12 form feed

status description
0 ready
1 printer not selected
2 timeout
3 I/O error
4 out of paper
5 printer busy

Printer Functions

75

Cirris.GetPrinterNamesByIndex

Cirris.GetPrinterNamesByIndex(number)

This function is useful to find the exact name of a local Windows printer or a network
printer with its server path. The exact printer name is required for the Cirris.SetPrinter
function, which is used to direct printing to a printer other than the default printer.

The Cirris.GetPrinterNamesByIndex function returns the name of a printer as a string.
The input number is an integer corresponding to one of the printers accessible to the test
system. The function Cirris.GetNumPrinters can be used to get the number of printers
accessible to the test system. For example, if Cirris.GetNumPrinters returned 3, you
could input a 1, 2, or 3 into Cirris.GetPrinterNamesByIndex to see the exact names of
each of the three printers.

Example:
iNumberOfPrinters = Cirris.GetNumPrinters()
printer_names = ""
for i=0, iNumberOfPrinters-1 do
 printer_names = printer_names..i..". "..Cirris.GetPrinterNameByIndex(i).."\n"
end
MessageBox("~Cirris.Print~".."Available Printers:\n"..printer_names.."\n")

The example above uses the function GetNumPrinters to find the number of printers,
and then uses the function GetPrinterNamesByIndex to make a string of printers that are
then displayed using the message box function.

Cirris.GetNumPrinters

Cirris.GetNumPrinters()

Returns the number of Windows printers that are available to the tester. The number of
printers is returned as an integer, which can then be used in conjunction with the Get
PrinterNameByIndex to return the printer names.

Cirris.NewPage

Cirris.NewPage [(immediate)]

Starts a new print page. Subsequent data to print will be on the new page. If the
optional input immediate is 1, the function immediately causes the printer to output the
current page. Any data previously sent to printer will print on this page. If immediate is
not used or is 0, the printer waits until Cirris.EndPrintJob is called to print the page.

Printer Functions

Cirris.Print

Cirris.Print (string)

Outputs a string to the print spool. The function Cirris.EndPrintJob will cause the string
to be printed. The string can include the ascii text to be printed, and escape codes such
as \n or \f to be applied to the string.

The full function definition is shown below. Note that three outputs can be returned.

number, status, error = Cirris.Print (string)

The output number identifies the number of characters sent to the print spool; status is
and integer that identifies the printer state (see Printer Status Codes on page 74); error
is a string that describes a print error.

Cirris.SetPrinter

Cirris.SetPrinter (name)

Selects the printer that will be used to print the subsequent print job. The input name is a
string that must exactly match a local Windows printer name or network printer name
with its server path. Use the function Cirris.GetPrinterNamesByIndex to get the exact
system names of printers.

Note the function can return two outputs as shown below.

status, error = Cirris.SetPrinter (name)

The output status is an integer that identifies the printer state (see Printer Status Codes
on page 74); error is a string that describes a print error.

Cirris.StartPrintJob

Cirris.StartPrintJob()

Tells the print driver to start spooling the print job. This function will direct printing to the
Windows default printer, or to the printer selected by the function Cirris.SetPrinter. The
Cirris.StartPrintJob function is always followed by Cirris.Print and Cirris.EndPrintJob
functions.

The function has no inputs, but can return two outputs as shown below.

status, error = Cirris.StartPrintJob()

The output status is an integer that identifies the printer state (see Printer Status Codes
on page 74); error is a string that describes a print error.

Printer Functions

77

SendTextToParallelPrinter

SendTextToParallelPrinter(string [,return])

This function has been preserved so that scripts previously written for the Touch 1 and
1100 testers can be used with Easy Touch Scripting. When run in the Touch 1 and
1100 testers, the function would send a string to a parallel printer. However now when
used with Easy Touch scripting, this function sends the string to the Windows default
printer’s print spool, not the parallel port on the tester. The string can include the ascii
text to be printed, and escape codes such as \n or \f to be applied to the string.

There are a few notable differences when using this command with a modern printer as
opposed to a parallel printer. When sending a string to a parallel printer, the printer
prints immediately. On a modern printer no text is printed until a form feed (\f) is
received. Also, parallel printers accepted the escape code \r (return to beginning of line)
to overprint text at the beginning of a line. However, modern printers do not support this
feature and will replace, not overprint, existing text when a \r is used. Additionally some
parallel printers do not return to beginning of a line when a new line code (\n) is
received. Windows printers return to the beginning of a line when a new line code is
received.

This function allows an input return. If return is non zero, a carriage return (\r) is
always added with a new line code (\n). This setting was used to ensure a parallel
printer would return to the beginning of a line when it received a new line code (\n).

The function can return two outputs as shown:

number, status = SendTextToParallelPrinter(string, return)

The output number, is an integer representing the number of the characters that were
printed. The function also returns an integer to status. This integer identifies the
printer’s status as defined in printer status code table on page 74.

Examples:

sTextToPrint = "Text string to be printed"
iNumCharsPrinted, iStatus = SendTextToParallelPrinter(sTextToPrint)

The function will output "Text string to be printed" to the default printer.
iNumCharsPrinted will contain the number of characters printed and iStatus will contain a
number describing the current status of the printer.

SendTextToParallelPrinter("GOOD CABLE\f")

The function will cause "GOOD CABLE" to be printed on the default printer.

Test Information Functions

78

Tester Information Functions

Get4WPairPt

Get4WPairPt (point)

This function determines if a given point is a four-wire pair point. If the point is a four-
wire point, the function returns a string containing the label for the point. If not, or if the
function is unsuccessful, the function returns nil. The point can be specified as an
integer value representing the system point, or a string representing a point label.

Example:
iPinNumber = 3
testPoint = Get4WPairPt(iPinNumber)
if testPoint == nil then
 error(iPinNumber .. “ is not a part of a 4W pair)
end

The RESULT, testPoint, will contain the label text if it is a fourwire pair point or nil if it is
not. If it is not a four-wire pair point, a message box listing the point will be displayed.

GetHardWareVersion

GetHardWareVersion()

This function returns the hardware version running on the tester. There are no inputs to
this function. The version is returned as a string.

GetProbedPin

GetProbedPin ()

Use this function to get the number of the test point of the currently probed pin.

GetRawPointNum

GetRawPointNum (label)

This function returns the system pin number of a custom label. System pin numbers can
range be 1 and 1024 depending on the size of your test system. If the label string is
invalid, the function returns nil. If no input is supplied, this function returns a description
of itself.

Examples:
sLabelText = “GROUND”
iPinNumber = GetRawPointNum(sLabelText)

The function will return the pin number in iPinNumber for the GROUND custom label.

Tester Information Functions

79

GetPtType

GetPtType (point)

This function returns a value to identify whether a given point is Stress High or Stress
Low. Half of the test points on the tester can be used to supply current from the high
current source in the tester. Stress High is used to supply the current and Stress Low is
used to sink the current. This function is used ONLY for commands dealing with four-
wire resistance measurement and the high current source.

GetTimeAsText

GetTimeAsText (select)

This function returns current tester time information as a text string. The returned time
information is determined by the integer input used as shown below. See also the
related function GetTimeasInteger.

Returned Time Information select

Current tester hour 0 - 23 1

Current tester minutes 0 - 59 2

Current seconds 0 - 59 3

Current time in the format HH:MM:SS 4

Number of “clock ticks” since the tester was turned on. See the definition
of clock ticks in GetTimeAsInteger function.

5

returned point type point

Integer containing one of the following
codes:
1 = Stress High (can source high current)
2 = Stress Low (can sink high current)

An integer containing the pin
number such as 82
OR
A string containing the point label
such as “J3-008”

Tester Information Functions

GetTimeAsInteger

GetTimeAsInteger (input)

This function returns current tester time information as an integer. The type of returned
time information is determined by the input number as shown below. See also the
related function GetTimeasText.

GetSystemInfoAsText

GetSystemInfoAsText (select)

This function returns system information about the tester as a string. The system
information that is returned is determined by the integer value of select, as shown in the
table below.

Returned Tester Time Information input

Current tester hour 0 - 23 1

Current tester minutes 0 - 59 2

Current tester seconds 0 - 59 3

Number of “clock ticks” since the tester was turned on.
There are 1000 clock ticks per second. Clock ticks begin incrementing from
0 when you turn on the tester, increment up to 2147483, the begin at -
2147483 and again increment to 2147483 again and so forth.

4

returned tester information select

Tester serial number (8 characters) 1

Login name that was used to log into the tester 2

Software version of the tester 3

Hardware version of the tester 4

Number of system test points 5

Maximum scanner voltage of the tester 6

Tester type 7

Test Information Functions

81

Test Information Functions

Cirris.BadCount

Cirris.BadCount

Returns the total of assemblies tested bad in all test runs.

Cirris.CableID

Cirris.CableID

Returns the cable ID for the cable being tested. For cable ID’s to be recorded, a method
for serial numbering must be selected under the Test Defaults Tab in the Test Editor.

Cirris.GetAdapters
Cirris.GetAdapters(mode, [index])

This function returns information on the adapters involved with a test. There are three
modes in which this function can be called as detailed below:

The Learn mode can only be called in an event script triggering upon event 1. This is
because the “Learn” operation performed by GetAdapters will erase test state data and
will cause the error “Not Ready to Test” when the test continues to execute after the Lua
call. Calling GetAdapters during event 1 is allowed because it occurs before the test is
initialized.

To get adapter information from a component script or other event number, use the Get
Count mode to get the number of adapters available.

After calling GetAdapters in either Learn or Get Count mode, the function can be called

Mode Mode Description Number of
Return
Values

Return Value
Descriptions

0

Learn – Performs a “Learn” operation and
discovers all adapters attached to the tester
and then returns the number found (only used
in EVT script, event 1)

1
Number of
Learned
adapters

1

Get Index – Returns the position, signature,
and strapping of the adapter at the index
specified by the second parameter to the
function call (first adapter is at index 0)

3
Position,
Signature,
Strapping

2

Get Count – Returns the number of attached
adapters as determined by the loading of the
wirelist (i.e. only adapters specified in the
wirelist will be considered)

1 Number of
verified adapters

Tester Information Functions

in Get Index mode with a second parameter (index) in order to get information on a
specific adapter. The index provided must be in the range of 0 to (AdapterCount – 1)
where AdapterCount is the value returned from GetAdapters in Learn or Get Count
mode.

Example:

local sOutput = "Adapter Information:\n"
local iCount = GetAdapters(2)

for iIndex = 0, iCount-1 do
 local Position, Signature, Strapping = GetAdapters(1, iIndex)
 if Position == nil then
 sOutput = sOutput.. "Invalid index: "..tostring(iIndex)
 else
 sOutput = sOutput.. tostring(iIndex).."\n"
 sOutput = sOutput.. "Pos: "..Position.."\n"
 sOutput = sOutput.. "Sig: "..Signature.."\n"
 sOutput = sOutput.. "Str: "..Strapping.."\n\n"
 end
end
MessageBox(sOutput)

The example above could be called in a component script to print out all the information
for adapters used in the test.

Test Information Functions

83

Cirris.GoodCount

Cirris.GoodCount

Returns the number of cables that were tested good in the current test run.

Cirris.LotID

Cirris.LotID

Returns the Lot ID for the current test run. For Lot ID to be recorded, the Enter Lot ID
option must be checked under the Set Test Defaults Tab of the Test Editor.

Cirris.RunBadCount

Cirris.RunBadCount

Returns the number of cables tested bad in the current test run. A test run begins when
a test program is loaded and the first test completes, and ends when the test program is
closed.

Cirris.RunGoodCount

Cirris.RunGoodCount

Returns the number of cables tested good, in the current test run. A test run begins
when a test program is loaded and a first test completes, and ends when the test
program is closed.

Cirris.RunTotalCount

Cirris.RunTotalCount

Returns the number of all cables tested, good or bad, in the current test run. A test run
begins when a test program is loaded and a first test completes. A test run ends when
the test program is closed.

Cirris.StationID

Cirris.StationID

Returns the Station ID number. This is a unique number that that identifies the tester or
test station. The Station ID number is generated when the Cirris easy-wire software is
installed.

Cirris.TotalCount

Cirris.TotalCount

Returns the total count of all cables tested in all test runs. The total count continues to
accumulate for any test that completes until the total counts are cleared in the test
window.

Tester Information Functions

GetCableStatus

GetCableStatus ()

This function returns the good or bad status for the cable tested. The function has no
inputs. If the cable status is good 0 is returned; if bad, -99 is returned.
Example
if(GetCableStatus() ~= 0) then
iNumBadCables++
end

The integer, iNumBadCables, will be incremented if the cable test result is bad.

GetComponentCount

GetComponentCount ()

This function returns an integer value of the number of components in the loaded Test
Program. Components include custom components, resistors, diodes, capacitors and so
forth. The function has no inputs.

Example:
iCount = GetComponentCount()
MessageBox(“Number of components = ”..tostring(iCount))

This example will display a message on the tester’s screen that contains the number of
components in the current wirelist.

GetErrorSignature

GetErrorSignature ()

This function returns the error signature for a bad cable as a string. If a cable is good,
this function returns the cable signature as a string. There are no inputs to this function.

Example
if GetCableStatus() == -99 then
sErrorSig = GetErrorSignature()
MessageBox(sErrorSig)
end

This example will output the error signature to the screen if the cable tested was bad.
For example, "8062B5-6F8NO" would be displayed on the screen.

Test Information Functions

85

GetComponentDetails

GetComponentDetails (index, select)

This function returns test details about components in the loaded test program. The full
function format is:
error, detail = GetComponentDetails (index, select)

The table below relates the function outputs and inputs.

error detail index select

0 = No error,
detail is valid.

-9999 = Error,
detail is not
valid

(integer)

Component Type
1 = Resistor
2 = Diode
3 = Link
4 = Capacitor
5 = Relative Capacitance
6 = Twisted Pair
7 = 4 Wire Resistor
8 = 4 Wire Wire
9 = Wire

Position of the
component in
the wirelist.
(integer)

0 = Component Type

Component’s Pass/Fail Status
0 = Fail
1 = Pass

1 = Pass Fail Status

From Test Point
Represented as a zero based
system test point. (integer)

2 = From Test Point

To Test Point
Represented as a zero based
system test point. (integer)

3 = To Test Point

Nominal or expected value
applied to the component
setup.
(floating point)

4 = Expected Value

Tolerance applied to the
component setup. (integer)

5 = Tolerance

Measured values from most
recent test. (floating point)

6 = Measured Value 1

Reverse voltage from diode
component returned from
most recent test. (floating
point)

7 = Measured Value 2

Tester Information Functions

GetErrorText

GetErrorText ()

This function returns error text on cables that have tested as bad on the tester. This error
text is the same error text displayed on the error screens during cable testing. If the
cable is not attached, the errors returned for this function are the same as the errors for
SPC data collection. If the cable is still attached, the errors returned for this function are
intermittent or low voltage errors. There are no inputs to this function. If the cable tests
as good, the function returns an empty string, "".

GetNumberTested

GetNumberTested (input)

This function returns the counts of the cables tested (Total, Good, and Bad) in the
current test run. These are the same counts displayed in the Test Window on the
tester. Each input number will return a different count type in the table below. If the
function has no input, it will return a description of itself.

returned total (integer) input

total tested 1

tested good 2

tested bad 3

Test Information Functions

87

GetPinLabel

GetPinLabel (pin,[select])

This function returns a default or custom label for a raw system pin number. Pin
numbers (test points) are between 1 and 128 for a base tester with no addons, between
1 and 256 for a tester with one addon, and so forth. If the function has no input, it
returns an error describing the function.

Example
sCustomLabelText = GetPinLabel(25)
The function will return the custom label text assigned to pin number 25 as a string in the
variable sCustomLabelText.

iPinNumber = 5
iReturnDefaultLabel = 1
sDefaultLabel = GetPinLabel(iPinNumber, iReturnDefaultLabel)
The function will return the default label format for pin number 5 because
iReturnDefaultLabel is set to one. It returns a string such as J1-005 in
sDefaultLabel.

returned label (string) pin (integer) select (integer)

Default Label assigned to the raw
system test point.
For example, “J2-024”.

A raw test point number.
such as 56

Any integer greater equal
to or greater than one.

Custom Label assigned to the
raw system test point
For example, “Red Wire”

A raw test point number.
For example, 56

Not used

Tester Information Functions

GetWirelistInfoAsText

GetWirelistInfoAsText (input)

Use this function to get text information on the loaded test program. Each input number
will return different information about the test program.

Examples:

sWirelistText = GetWirelistInfoAsText(1)
The function returns the current wirelist filename as a text string in, sWirelistText. For
example, sWirelistText = "TESTFILE.WIR".

input
(intetger)

Returned Test Program Information

1 The loaded test program

2 The current location or path of the easy-wire database test program
without the filename (up to 144 characters)

3 The description of the test program. (Up to 30 characters

4 The cable signature

5 The cable signature (complex cables only)

6 The insulation test parameter signature (complex cables only)

7 The adapter position (Jx), a space, and then the adapter signature (six
characters)

8 The adapter position and signature followed by a * separator followed by
the adapter description (up to 30 characters)

10 The Low Voltage Settings with each parameter on a separate line

11 The High Voltage Settings with each parameter on a separate line

12 Each net with its connections on a separate line.
These connections will not be labeled even if custom labels are used in the
wirelist.

13 Each component on a separate line

14 Each custom or default test point label on a separate line

15 Each fourwire pair on a separate line

16 The CRC Signature

17 The name & location of the Custom Component Script

18 The name & location of the Test Event Script

19 SPC Data Collection Settings

Test Information Functions

89

sCableDescription = GetWirelistInfoAsText(3)
The function returns the cable description of the current wirelist as a text string in
sCableDescription. For example, sCableDescription = "Cable for batch 10".

sCableSignature = GetWirelistInfoAsText(5)
The function returns the cable signature of the current wirelist as a text string in
sCableSignature. For example, sCableSignature = "5760A5-6F0Z2".

sLowVoltSettings = GetWirelistInfoAsText(10)
The function returns the low voltage settings as text with each parameter on a separate
line in sLowVoltSettings. For example, sLowVoltSettings =
"CONNECTION RESIS 2.00 K ohm
 LV INSULATION RESIS 6.00 K ohm"

sWirelistLabels = GetWirelistInfoAsText(14)
The function returns each label as a text string on a separate line in sWirelistLabels.
For example, sWirelistLabels =
"J1-001 = BLUE
 J1-002 = RED
 J5-006 = GREEN"

functionDescription = GetWirelistInfoAsText()
The function returns the function description as a text string in functionDescription.

Tester Information Functions

IsSPCDataCollectionOn

IsSPCDataCollectionOn()

This function returns a 1 if data collection is on in the test program, or a 0 if data
collection is off. There is no input for this function. Note that that data collection is a
purchased option on the Easy Touch and the 1100 testers. Additionally, in the tester’s
software interface you must select Stored Measured Test Values for a test program to
use this feature.

Example:
iDataCollectionOn = IsSPCDataCollectionOn()

iDataCollectionOn will contain a zero if SPC data collection is OFF in the current
wirelist or a one if SPC data collection is ON in the loaded test program.

TWLGetErrorText

TWLGetErrorText

error = TWLGetErrorText(result)

This function returns a text string, error, that describes an error from the last test after
the function TestWirelist was called. The function TestWirelist function returns result
which is used as an input to TWLGetErrorText. Using TWLGetErrorText is the only
reliable way to get error text when testing wirelists using TestWirelist.

Example:
iTestVal = TestWirelist(255) -- 255 selects LV, component and HV test
if iTestVal > 0 then -- error are greater than 0
 sErrText = TWLGetErrorText(iTestVal)
end

This example will get the error text for the failed wirelist test.

WiresAttached

WiresAttached()

The WiresAttached function determines whether a cable is present. It checks only the
adapters listed in the currently loaded wirelist. This function has no inputs. The function
returns nil if nothing is attached, or a 1 one or more connection is sensed.

Example:
iAttached = WiresAttached ()

iAttached will contain nil if no wires are attached, or 1 if wires are attached.

User Interface Functions

91

User Interface Functions

Cirris.GetWrappedText

Cirris.GetWrappedText(text [, length, center])

This function applies the control codes to a text string so the text will be wrapped at a
defined maximum line length. Codes may also be applied to center the text. See the
table below.

If the input text contains a line feed code (LF) by itself, this function replaces it with a
carriage return and a linefeed code (CRLF).

In Easy Touch Scripting the legacy Cirris function GetWrappedText behaves identically
to the Cirris.GetWrappedText function. Note that previously a third input allowed the
legacy GetWrappedText function to control whether linefeed codes would be replaced
with carriage return line feeds. If used this input now ignored.

Example:
sWrappedText = GetWrappedText(sTextToWrap, 80)
The function returns the text wrapped at 80 characters per line as a string in
sWrappedText. The text will be left justified.

Cirris.HideBackgroundImage

Cirris.HideBackgroundImage

This function closes the background image file previously displayed using
Cirris.ShowBackgroundImage function. The Cirris Test Window and other open
application windows will again be visible on the test monitor.

Cirris.PressDoneButton

Cirris.PressDoneButton

This function effectively presses the Done button in the test window while in a script.
This command allows event script that could be in a mode to run repeatedly to exit.

input description
text A string containing the text which will be wrapped.
length Integer indicating the maximum number of characters per line for the

wrapped text. If unspecified, the default is 20 characters.
center 0 = Text is not centered

1 = Center text
If unspecified, the default is 0.

User Interface Functions

Cirris.ShowBackgroundImage

Cirris.ShowBackgroundImage (image [,s] [,p])

This function displays a background image file to hide the easy-wire test window and
other open application windows. The image file can serve as a background in an event
script so that operator focus can be on subsequent script messages. This function is
most typically used in an event script that takes control of the test. The string image
specifies the image file name and path. The setting s can be set to 1 to stretch the
image to the nearest horizontal or vertical monitor restraint. If p is additionally set to 0,
the image can be stretched non proportionally to entirely fill the monitor. Image files
may include png, jpeg, bmp, and gif file types.

User Interface Function

93

DialogCheckBtn

button = DialogCheckBtn (handle)

The DialogCheckBtn function is used in a while loop to identify a dialog box button push.
The function returns an integer to button corresponding to the button that was pressed
in an open dialog box. While no button is pushed, this function returns a 0. The dialog
box is referenced by its handle that was created using the DialogOpen function. The
script is still running when a dialog box is displayed on the screen unlike a message box.
Because operations are still running, any tester pop-ups will display on top of a dialog
box. You can check digital I/O or perform test functions while waiting for a dialog box
button to be pressed.

See the example dialog box for the DialogOpen function on the next page. The code
below would identify which button is pushed for the example dialog box.

iDia=DialogOpen ("~Wire Color~".."What color is the wire?", "Red", "White",
"Green")
iButton = 0
 while iButton == 0 do
 iButton = DialogCheckBtn(iDia)
 if iButton == 1 then
 MessageBox("You pressed Red")
 end
 if iButton == 2 then
 MessageBox("You pressed White")
 end
 if iButton == 3 then
 MessageBox("You pressed Green")
 end
 end
 DialogClose(iDia)

DialogClose

DialogClose (handle)

Closes a dialog box identified by the input number. This function is used along with the
functions DialogOpen and DialogCheckBtn. The script is still running when a dialog box
is displayed on the screen unlike a message box. Because operations are still running,
any tester pop-ups will display on top of a dialog box. This function is used to clean up
memory. For every DialogOpen function there should be a DialogClose function.

User Interface Functions

DialogOpen

DialogOpen

handle = DialogOpen ([~title~..]message [, button1] [, button2] … [,sbutton6])

The DialogOpen function displays a dialog box containing custom text and up to six
dialog buttons. This function also returns a handle to identify the dialog box. This
handle is used with the DialogCheckBtn and DialogClose functions. The dialog box will
not have a default CANCEL button if no other custom buttons are created. The script is
still running when a dialog box is displayed on the screen unlike a message box.
Because operations are still running, any pop-ups from the tester will display on top of
these dialog boxes.

For example, the following statement creates a dialog box like the one below
iDia = DialogOpen ("~Wire Color~".."What color is the wire?", "Red", "White”, “Green”)

MessageBox

MessageBox

This function displays a message box on the tester’s display to display a message to the
operator. Up to six buttons can be displayed on the message box to allow a selection.
Unlike dialog boxes, the tester and script do not continue to run when a message box is
displayed. The full format for this function is as follows:

button = MessageBox ([~title~]..message [, button1] [, button2] …
[,sbutton6])

The function returns an integer (1 to 6) to button to identify a pressed button. Strings
are also used to define the message box message as well as the optional title and
button names. If no buttons are specified, the message box will contain an OK button
that the operator will have to select to continue.

User Interface Function

95

Examples:

MessageBox ("Attach tie wraps")

Results in the message box below.

button=MessageBox ("~Voltage~".."Choose a test voltage", "1000", "1100", "1200")

Results in the message box below:

User Interface Functions

PlaySound

PlaySound (pitch, duration, volume)

This function plays a sound at a specified pitch, duration and volume. The volume is
dependent upon the tester’s volume setting. For a maximum sound, set the tester’s
volume at its maximum setting.

Example:
iPitch = 300
iDuration = .5
iVolume = 100
PlaySound(iPitch, iDuration, iVolume)

This example will play the sound for 500 milliseconds at 300 Hz at full volume.

PromptForUserInformation

PromptForUserInformation

This function displays a user prompt window on the tester and returns the valid user
entry. The prompt window can receive user entry that is alphanumeric, numeric, or
“password”. When the password entry is used, alphanumeric entry is accepted, but
asterisks hide the operator’s entry characters. Numeric entry accepts only integers. At
the bottom of every prompt window an OK and CANCEL button. The full format for the
function is as follows:

entry = PromptForUserInformation(type, firstline, secondline, maxchar[, initial])

Inputs to this function are described in the table below.

input description
pitch An integer indicating the pitch of the sound in Hertz.

duration An integer indicating the duration of the sound in seconds.
volume An integer from 1 to 100 indicating the volume of the

sound where 100 is the loudest.

Input Description
type An integer value that defines the type of user input.

1 = alphanumeric
2 = numeric (integers)
5 = password

firstline String of text - up to 30 characters - for the first prompt line.
secondline String of text - up to 30 characters - for the second prompt line.
maxchar Integer of the maximum number of characters the user can enter. The

range for this value is 1 to 30.
initial Contains an initial value displayed in the prompt entry box. An

alphanumeric string or an integer depending the value of type

User Interface Function

97

The function will return the text the user enters to entry, or if the user presses Cancel,
the function returns nil to entry. Always test for the value of nil and replace it with a
valid string so subsequent routines will not break when they expect a string

Example:

sInput1 = PromptForUserInformation(1, "Enter the assembly part number", "five digit extention", 10,
"80-");

Results in the message box:

1100 Embedded File Functions

98

1100 Embedded File Functions

The following scripting functions allow Easy Touch Scripting, run on a PC, to control files
stored in the embedded memory of the Cirris 1100R and 1100H testers.

Many scripts were written with Cirris Scripting functions designed to run internally to
Cirris 1100R and 1100H testers. Many of the functions below are the similar equivalent
to the Cirris Scripting functions designed for controlling files internally to the tester. To
differentiate many of these functions from the previous scripting functions an underscore
“_“ has been added at the beginning of the function’s file name. For example the first
function described below, _appendto has the previous similar function, appendto.

Therefore, if you want to use a script written with Cirris Scripting functions for internal file
control, you will have to do one of two things. You can change the functions used in the
script to the new files names, or you may make an argument statement at the beginning
of the script file equating the old function file name with the new. For example,
appendto=_appendto will make the new internal function _appendto take the place of the
previous appendto function.

_appendto

_appendto (x:\\file)

This function opens a file from the 1100 internal memory and returns a handle for the
file. If no file is opened, nil is returned to the handle. If the function is unsuccessful, a
separate error message is also returned. Use this function when you want to add
something to the file. This function will not erase the contents of a file. This function
does not close the current output file so when done use the _closefile or _writeto
functions to close the file.

Example:
serialNumFile, sErrMsg = appendto(“c:\\cableser.dat”)
write(“Serial Number: 12345678”)
writeto() -- This closes the file

Returns the file handle in serialNumFile if the file “cableser.dat” opens successfully.
If it fails opening the file, it will return a nil in serialNumFile and an error string in
sErrMsg. The write function will write to the file and the writeto function will close
the file.

1100 Embedded File Functions

99

CopyEmbeddedFileToPc

CopyEmbeddedFileToPc (source, x:\\destination)

This function copies a file from internal memory of an 1100 tester to PC controlling the
tester. The input source is the filename on the 1100; destination, the path and
filename on the PC. If the function is successful, it returns nil. If unsuccessful, it returns
an error string describing the error. See also the related function
CopyPcFileToEmbedded.

Example:

sCopyErrror = CopyEmbeddedFileToPc (“lastlrnd.sys”, “c:\\myfolder\\last.wir”)

In this example the last learned file from an 1100 tester, lastlrnd.sys is copied to a
new file name last.wir in the folder my folder on the PC.

_copyfile

_copyfile (source, destination)

This function copies a source file to a destination file within the 1100 internal memory. If
there is a copy error, its description is returned.

Example:
_copyfile (“test1.wir”, “test1.bak”)

CopyPcFileToEmbedded

CopyPcFileToEmbedded (x:\\source, destination)

This function copies a file from the PC running the easy wire software to the embedded
memory of the 1100 tester. The input source is the path and filename on the PC;
destination, the filename in the 1100 memory. If this function is successful, it returns
nil. If unsuccessful, it returns an error string describing the error. See also the related
function CopyEmbeddedFileToPc.

1100 Embedded File Functions

DirUtils

DirUtils (input1, [input2])

This function can perform directory services for the 1100 embedded memory. These
services include changing the current directory, displaying the current directories
contents, and getting the current directory’s path. The table below shows the
relationship between the inputs of this function and returned directory information.

Example:
sCurDir = DirUtils(3)
sResult = DirUtils(1, sNewDir)
sDirContents = DirUtils(2,”*.wir”)
sResult = DirUtils(1, sCurDir)

This example stores the original directory path in sCurDir. The current directory then
becomes the directory contained in the string sNewDir. All the wirelist files in the
directory and their available descriptions are then retrieved into sDirContents before
changing back to the original directory.

returned information input 1 input2

New current directory’s path is
returned as a string, or nil if
unsuccessful.

1 String containing the directory path that
will be the current directory.

Contents of the current directory
of the specified file type returned
as a string, or nil if unsuccessful.

2 String containing a linefeed delimited list
of file types to display.

Examples:
 “*.wir” or “*.*” or
“*.wir\n*.lua\n*.evt” or
“*.rpt\n*.cmp”

default: “*.*”

Current directory’s path returned
as a string, or nil

3 Not used

1100 Embedded File Functions

101

_openfile

_openfile (x:\\filename, mode)

This function opens a file in the mode specified in the string mode. It returns a new file
handle, or, in case of errors, nil plus a string describing the error. Potential values of
mode are defined as follows:

_read

_read ([readpattern])

This function reads a file according to a read pattern. If you call the function without
readpattern, it defaults to reading the next line or the first line for the first read. The
function returns a string containing the characters read, or a nil if it fails to read anything.
Previous to using the read function, the file must be opened using the _readfrom
function. Use the function, readfrom, to close the file when finished reading. Potential
read patterns are described below.

mode description
"r" read mode

"w" write mode

"a" append mode

"r+"; update mode, all previous data is preserved

“w+” update mode, all previous data is erased;

"a+" append update mode, previous data is preserved, writing is only allowed
at the end of file

readptattern description
“*.*” Returns the next character or nil on end of file.

“.*” Reads the entire file.

".*" Returns the next line without the linefeed or nil on end of file. This
is the first line when reading a file for the first time. You do not
have to type in this default pattern, just call the function without
using any input.

"[^\n]*{\n}"
(default pattern)

Returns the next word skipping spaces if necessary or nil on end
of file.

"{%s*}%S%S*" Returns the next integer or nil if the next characters are not
integers.

"{%s*}[+-]?%d%d" Append update mode. Previous data is preserved. Writing is
only allowed at the end of file.

1100 Embedded File Functions

_readfrom

_readfrom (x:\\filename)

Use this function to open or close a file from 1100 embedded memory. The path should
be included in the filename. When used to open a file, the function returns a file handle.
If the function fails to open a file, it returns a nil, and a string describing the error. When
this function is called without a filename, it closes the file.

Example:
sFilename = “c:\\cable550.wir”
canReadFile, sErrMsg = readfrom(sFilename)
if (canReadFile ~= nil) and (sErrMsg == nil) then
 local sFirstLine = read
 local sSecondLine= read
 readfrom ()
end

This example combines the read function with the readfrom function. It will return the file
handle in canReadFile if it successfully opens the cable550.wir file. If the function fails, it
will return a nil in canReadFile and an error string in sErrMsg. If the file opens, the first
line will be read into the string sFirstLine using the read function. The second line will
be read into the string, sSecondLine using the read function. The file is then closed
calling the function readfrom again.

_remove

_remove (x:\\filename)

This function deletes the file with the given name in 1100 embedded memory. If this
function fails, it returns nil, plus a string describing the error.

Example
sFilename = "temp.wir"
error, sErrMsg = remove(sFilename)

The function removes the file "temp.wir”. If the function should fail, it will return a nil to
error and an error string such as "No such file or directory" in sErrMsg.

1100 Embedded File Functions

103

_rename

_rename (x:\\filename)

This function to renames a file in 1100 embedded memory. If the function fails to
rename the file, it returns a nil, plus a string describing the error.

Example:
sOldFilename = "c:/temp.fil"
sNewFilename = "c:/values.fil"
error, sErrMsg = rename(sOldFilename, sNewFilename)

The function will rename the file, temp.fil to values.fil. If the function fails, it will
return a nil in error and an error string in sErrMsg.

_seek

_seek (handle [,base] [, offset]) _seek

This function sets and gets the file position for 1100 an embedded memory file. The file
position is measured in bytes by offset from base. The value of base is a string with
one of the following values.

In case of success, the _seek function returns the file position, measured in bytes from
the beginning of the file. If the call fails, it returns nil, plus a string describing the error.

The default value for base is cur, and for offset is 0. Therefore, the call _seek(file)
returns the current file position, without changing it; the call seek(file, "set") sets the
position to the beginning of the file (and returns 0); and the call seek(file, "end") sets
the position to the end of the file, and returns its size.

_write

_write (x:\\filehandle, value1, value2, …)

Use this function to write to a file. Note, before using this function the file is opened or
created in embedded memory using the _writeto function. After you are finished writing
use _writeto to close the file. The _write function returns status and error values as
shown in the full format statement below.

status, error = write(filehandle, value1, value2, ...)

If the function fails to write the file, it will return nil to error and a string describing the
error to error. If the function successfully writes a file, it will return a value other than
nil to status and nil to error.

base description
set base is position 0 (beginning of the file)
cur base is current position
end base is the end of the file

1100 Embedded File Functions

_writeto

_writeto ([x:\\fileame])

The full format of this function is:

filehandle, error = writeto ([x:\\filename])

This function can be used in one of two ways. One use is to open a new file in 1100
embedded memory so you can write something to it. Include the path and the extension
for the filename. This command works with files with the following file extensions: .txt,
.wir, .lua, .evt, .rpt, and .cmp. If successful, this function will return a handle for the
opened file. If the function fails, nil is returned to handle and an error description to
error. Take note, if this function is run on an existing file, the contents of the existing
file will be completely erased.

The other use of this function is to close the current output file. When a file is opened it
becomes the current output file until it is closed or another file is opened. To close the
current output file use this function without a filename.

Example

sFile = “c:\\storage.txt"
iCanWriteFile, errMsg = _writeto(sFile)
if iCanWriteFile then
 _write("Company XYZ")
 _writeto() -- Close the file
end

In this example the function writeto will return the file handle in iCanWriteFile if it
successfully opens the storage.dat file. If it fails, it will return a nil in iCanWritefile and
an error string in sErrMsg. The function _write, writes the string, Company XYZ, to the file
and _writeto then closes the file.

105

Preserved Lua 3.2 Functions
Easy Touch scripting uses Lua version 5.1. However scripts that executed within the
Touch1 and 1100 testers were written in Lua version 3.2. Some Lua 3.2 functions have
become obsolete in Lua 5.1. To allow you to more easily run the older 3.2 Lua scripts,
the functionality of these obsolete functions is preserved in Cirris Easy Touch Scripting.

 Preserved Lua 3.2
functions

New Lua 5.1
functions

 Preserved Lua 3.2
functions

New Lua 5.1
functions

abs math.abs. log10 math.log10

acos* math.acos max math.max

ascii string.byte. min math.min

asin* math.asin mod math.fmod

atan* math.atan pi math.pi

atan2* math.atan2 pow math.pow

ceil math.ceil rad math.rad

cos† math.cos random math.random

cosh† cosh.cos randomseed math.randomseed

date os.date sin† math.sin

deg math.deg sinh† math.sinh

execute os.execute sort sable.sort

exp math.exp. sqrt math.sqrt

getn table.getn strbyte string.byte

ldexp math.ldexp strchar string.char

log math.log. strfind string.find

floor math.floor strlen string.len

foreach table.foreach strlower string.lower

foreachi table.foreachi strrep string.rep

format string.format strsub string.sub

frexp math.frexp strupper string.upper

gsub string.gsub tanh† math.tanh

Idexp math.idexp tinsert table.insert

log math.log tremove table.remove

 * This function assumes an angle is specified in terms of degrees, whereas its replacement assumes an angle

in terms of radians.
† This function returns an angle in terms of degrees, whereas its replacement Lua 5.1 function returns an

angle in terms of radians.

Unsupported Cirris Functions
The following scripting functions may have been used in scripts executed within the
Cirris Touch1 and 1100 testers, but are no longer supported in Easy Touch Scripting.

Unsupported
Function

Notes

appendto see io.output. You can use _appendto for 1100 embedded
memory files.

remove You can use “_remove” for 1100 embedded memory files.
rename You can use “_rename” for 1100 embedded memory files.
Seek Use “_seek” for embedded files.

remove
rename

call See pcall and xpcall.
cleardirectory See os.remove.

copyfile See the Lua 5.1 functions io.input, io.output, io.open, and
io.write. You can use _copyfile for 1100 embedded memory
files.

Dofile
GetButtonPress

LoadWirelist
LuaError
openfile You can use _openfile for 1100 embedded memory files.
outtextxy

read You can use _read for 1100 embedded memory files.
ReadBlockFromSerial

readfrom You can use _readfrom for 1100 embedded memory files.
ReadFromSerial

remove
rename

SaveSPCData
Seek

SetCableSerialNumber
SetSerialParams
TestPreference Preferences can now be saved on each test.

tmpname
write You can use _write for 1100 embedded memory files.

WriteBlockToSerial
writeto You can use _writeto for 1100 embedded memory files.

WriteToSerial

107

Index

_

_appendto, 98
_copyfile, 99
_openfile, 101
_read, 101
_readfrom, 102
_remove, 102
_rename, 103
_write, 103
_writeto, 104

1

1100 embedded file functions, 98

C

Cirris. PressDoneButton, 91
Cirris.BadCount, 81
Cirris.CableID, 81
Cirris.ChDir, 44
Cirris.CloseDir, 44
Cirris.CopyDir, 44
Cirris.CurrentDir, 45
Cirris.DirExists, 45
Cirris.EndPrintJob, 74
Cirris.GetAdapters, 81
Cirris.GetNumPrinters, 75
Cirris.GetPrinterNamesByIndex, 75
Cirris.GetWrappedText, 91
Cirris.GoodCount, 83
Cirris.HideBackgroundImage, 91
Cirris.LotID, 83
Cirris.MkDir, 45
Cirris.NewPage, 75
Cirris.OpenDir, 46
Cirris.OpenFileDiaglog, 46
Cirris.OpenFolderDiaglog, 46
Cirris.Print, 76
Cirris.ReadDir, 47
Cirris.RmDir, 47
Cirris.RunBadCount, 83
Cirris.RunGoodCount, 83

Cirris.RunTotalCount, 83
Cirris.SetPrinter, 76
Cirris.ShowBackgroundImage, 92
Cirris.StartPrintJob, 76
Cirris.StationID, 83
Cirris.TotalCount, 83
component scripts

examples, 15
inserting in a test, 16
overview, 13
syntax, 14

CopyEmbeddedFileToPc, 99
CopyPcFileToEmbedded, 99

D

debugging, 32, 33
Delay, 38
DialogCheckBtn, 93
DialogClose, 93
DialogOpen, 94
DirUtils, 100

E

embedded blocks
calling sub-functions, 27
changing default, 26
global variables, 25
implementation, 21
introduction, 20

EVT test event script
overview, 8
parameters, 12, 14
required syntax, 9
selecting, 10

F

file functions, 44
functions

alphabetically, 36
by category, 34

G

Get4WPairPt, 78
GetCableStatus, 84
GetCapMeasurement, 57, 61
GetComponentCount, 84
GetComponentDetails, 85
GetDateAsText, 38
GetErrorSignature, 84
GetErrorText, 86
GetHardWareVersion, 78
GetNumberTested, 86
GetPinLabel, 87
GetProbedPin, 78
GetPtType, 79
GetRawPointNum, 78
GetRelCapMeasurement, 58
GetResistanceMeasurement, 59
GetResistanceMeasurement4W, 60
GetSystemInfoAsText, 80
GetTimeAsInteger, 80
GetTimeAsText, 79
GetTotalCapMeasurement, 61
GetUserOutputStates, 41
GetWirelistInfoAsText, 88

H

HipotNetTiedToPoint, 62
HipotNetTiedToPoints, 63
HipotPointMask, 67

I
IsSPCDataCollectionOn, 90

L

LearnCable, 68
low level function, 48

master clear, 55
measure voltage, 53
read / clear vector, 51
route current to relay, 54
set all default, 55
set current, 52
set hight current, 56
sink / unsink, 48

source / clear vector, 50
turn on relay, 49

Lua Test Event Script
Overview, 5

LUA Test Event Script
required syntax, 6
selecting, 7

M

measurement and test functions, 57
MessageBox, 94
MicroLan, 69

P

parameter types and values, 12, 14
PlaySound, 96
preserved lua 3.2 functions, 105
printer functions, 74
PromptForUserInformation, 96

R

ReadUserInputStates, 42
remove, 106
rename, 106
report scripts

overview, 18
setting up, 18
syntax, 19

S

script errors, 32
scripting

Easy Touch scripting defined, 1
enabling scripting, 2
getting a script, 3
kinds of scripts, 4

SendTextToParallelPrinter, 77
SetDelayTimeInMilliseconds, 39
SetUserOutputStates, 43

T

test information functions, 81
tester information functions, 78
TestWirelist, 71

109

TimePassed, 39
TimerClose, 39
TimerDone, 40
TimerReset, 40
TWLGetErrorText, 90

U

unsupported cirris functions, 106
UseChildWirelist, 72
user interface functions, 91

W

WiresAttached, 90

	Introduction
	What is Easy Touch scripting?
	Enabling Scripting
	Different kinds of scripts
	Test Event Scripts
	Component Scripts
	Custom Report Scripts

	Getting a Script
	LUA Test Event Scripts
	Overview
	Required Syntax for a LUA Test Event Script
	Selecting the LUA Test Event Script for a Test Program

	EVT Test Event Scripts
	Overview
	Required Syntax for an EVT Test Event Script
	Example of an EVT Test Event Syntax

	Selecting the EVT Test Event Script for a Test Program
	Parameter Type
	Ranges for
	Default Values
	Description

	Parameter Types and Values
	Component Scripts
	Overview
	Component Script Syntax
	Example

	More Component Script Examples
	Inserting a LUA Component into a Test Program
	Overview
	Standard Reports
	Custom Report Script
	EVT Test Script

	Setting up a Custom Report Script
	Custom Report Syntax
	Custom Script Example

	Parameter Types and Values
	Embedded Blocks
	Who Should Read this Section
	Intended audience
	Why you might need to use Embedded Blocks

	How Embedded Blocks are Implemented
	Implementation
	Important Notes
	Global Variables
	Changing default behavior
	Calling sub-functions
	Summary Examples

	Script Errors & Debugging
	Common Script Errors
	Debugging Methods

	Cirris Functions
	Cirris functions organized by category
	Cirris Functions organized alphabetically
	LearnCable

	Date and Time Functions
	Delay
	Delay (delayseconds)
	GetDateAsText
	GetDateAsText (select)

	SetDelayTimeInMilliseconds
	SetDelayTimeInMilliseconds(delay)

	TimePassed
	TimePassed (timer)

	TimerClose
	TimerClose(timer)

	TimerDone
	TimerDone(timer)

	TimerReset
	TimerReset (timer)

	Digital Input and Output Functions
	GetUserOutputStates
	GetUserOutputStates
	ReadUserInputStates
	ReadUserInputStates

	SetUserOutputStates
	SetUserOutputStates

	File Functions
	Cirris.ChDir
	Cirris.ChDir (x:\\directory)
	Cirris.CloseDir
	Cirris.CloseDir (handle)

	Cirris.CopyFile
	Cirris.CopyFile (x:\\source, x:\\destination)

	Cirris.CurrentDir
	Cirris.CurrentDir

	Cirris.DirExists
	Cirris.DirExists (x:\\directory)

	Cirris.MkDir
	Cirris.MkDir (x:\\directory)

	Cirris.OpenDir
	Cirris.OpenDir (x:\\directory, [files, subdirectories])

	Cirris.OpenFileDialog
	Cirris.OpenFileDialog

	Cirris.OpenFolderDialog
	Cirris.OpenFolderDialog

	Cirris.ReadDir
	Cirris.ReadDir (handle)

	Cirris.RmDir
	Cirris.RmDir (directory)

	Low Level Function
	LowLevelCmd
	Sink / Unsink
	Turn On Relay
	Source / Clear Source Vector
	Read / Clear Read Vector
	Set Current
	Measure Voltage
	Route Current to Relay
	Master Clear
	Set All Default
	Set High Current

	Measurement and Test Functions
	GetCapMeasurement
	GetCapMeasurement (point1, point2)
	GetRelCapMeasurement
	GetRelCapMeasurement (shield, reference)

	GetResistanceMeasurement
	GetResistanceMeasurement (point1, point2)

	GetResistanceMeasurement4W
	GetResistanceMeasurement4W (point1, point2)

	GetTotalCapMeasurement
	GetTotalCapMeasurement (pointlist)

	HipotNetTiedToPoint
	HipotNetTiedToPoint

	HipotNetTiedToPoints
	HipotNetTiedToPoints

	HipotPointMask
	HipotPointMask

	LearnCable
	LearnCable

	MicroLan
	MicroLan
	result = MicroLan(input, [param])

	TestWirelist
	TestWirelist
	result = TestWirelist (testnum)

	UseChildWirelist
	UseChildWirelist

	Printer Functions
	Notes on Printing
	Printer Status Codes
	Cirris.EndPrintJob
	Cirris.EndPrintJob()

	Cirris.GetPrinterNamesByIndex
	Cirris.GetPrinterNamesByIndex(number)

	Cirris.GetNumPrinters
	Cirris.GetNumPrinters()

	Cirris.NewPage
	Cirris.NewPage [(immediate)]

	Cirris.Print
	Cirris.Print (string)

	Cirris.SetPrinter
	Cirris.SetPrinter (name)

	Cirris.StartPrintJob
	Cirris.StartPrintJob()

	SendTextToParallelPrinter
	SendTextToParallelPrinter(string [,return])

	Tester Information Functions
	Get4WPairPt
	Get4WPairPt (point)
	GetHardWareVersion
	GetHardWareVersion()

	GetProbedPin
	GetProbedPin ()

	GetRawPointNum
	GetRawPointNum (label)

	GetPtType
	GetPtType (point)

	GetTimeAsText
	GetTimeAsText (select)

	GetTimeAsInteger
	GetTimeAsInteger (input)

	GetSystemInfoAsText
	GetSystemInfoAsText (select)

	Test Information Functions
	Cirris.BadCount
	Cirris.BadCount
	Cirris.CableID
	Cirris.CableID

	Cirris.GetAdapters
	Cirris.GetAdapters(mode, [index])

	Cirris.GoodCount
	Cirris.GoodCount

	Cirris.LotID
	Cirris.LotID

	Cirris.RunBadCount
	Cirris.RunBadCount

	Cirris.RunGoodCount
	Cirris.RunGoodCount

	Cirris.RunTotalCount
	Cirris.RunTotalCount

	Cirris.StationID
	Cirris.StationID

	Cirris.TotalCount
	Cirris.TotalCount

	GetCableStatus
	GetCableStatus ()

	GetComponentCount
	GetComponentCount ()

	GetErrorSignature
	GetErrorSignature ()

	GetComponentDetails
	GetComponentDetails (index, select)

	GetErrorText
	GetErrorText ()

	GetNumberTested
	GetNumberTested (input)

	GetPinLabel
	GetPinLabel (pin,[select])

	GetWirelistInfoAsText
	GetWirelistInfoAsText (input)

	IsSPCDataCollectionOn
	IsSPCDataCollectionOn()

	TWLGetErrorText
	TWLGetErrorText

	WiresAttached
	WiresAttached()

	User Interface Functions
	Cirris.GetWrappedText
	Cirris.GetWrappedText(text [, length, center])
	Cirris.HideBackgroundImage
	Cirris.HideBackgroundImage

	Cirris.PressDoneButton
	Cirris.PressDoneButton

	Cirris.ShowBackgroundImage
	Cirris.ShowBackgroundImage (image [,s] [,p])

	DialogCheckBtn
	button = DialogCheckBtn (handle)

	DialogClose
	DialogClose (handle)

	DialogOpen
	DialogOpen

	MessageBox
	MessageBox

	PlaySound
	PlaySound (pitch, duration, volume)

	PromptForUserInformation
	PromptForUserInformation

	1100 Embedded File Functions
	_appendto
	_appendto (x:\\file)
	CopyEmbeddedFileToPc
	CopyEmbeddedFileToPc (source, x:\\destination)

	_copyfile
	_copyfile (source, destination)

	CopyPcFileToEmbedded
	CopyPcFileToEmbedded (x:\\source, destination)

	DirUtils
	DirUtils (input1, [input2])

	_openfile
	_openfile (x:\\filename, mode)

	_read
	_read ([readpattern])

	_readfrom
	_readfrom (x:\\filename)

	_remove
	_remove (x:\\filename)

	_rename
	_rename (x:\\filename)

	_seek
	_seek (handle [,base] [, offset]) _seek

	_write
	_write (x:\\filehandle, value1, value2, …)

	_writeto
	_writeto ([x:\\fileame])

	Preserved Lua 3.2 Functions
	Unsupported Cirris Functions

	Index

