

Digital I/O Module Getting Started Guide

Digital IO allows you to set up automated actions to make the test process safer and more efficient. Unlike the digital IO port built into most Cirris tester models, this enhanced Digital IO module comes with more voltage options, more inputs and outputs, and higher current-giving you additional control of your test process.

Digital IO Hardware

The Digital IO connector has a 44-pin D-Sub connector with the following functions:

20 Input/Output Dual Pins

The Digital IO module has 20 input/output dual pins. These pins can be used as either an input or an output depending on your needs. When used for output, the pins function similar to the dedicated output pins. However, for light loads (typically less than 4 mA) it is advised you use the dedicated outputs.

8 Dedicated Output Pins

The module's 8 dedicated output pins are open collector or "sink" outputs. When activated, they will connect (or sink) a voltage to ground, in effect turning ON the output circuit. The outputs can sink up to 500 mA total. To limit the output current, always ensure adequate resistance between power supply and the output.

4 Voltage Rails

The Digital IO module has 4 voltage rails capable of drawing a max of 500 mA combined. They are accompanied by 4 ground pins. The 4 rails have the following voltages:

- 3.3 VDC
- 12 VDC

• 5 VDC

24 VCD

Digital IO Module Connector Pin-out

Pin	Purpose		Pin	Pu
1	24 VDC		23	Inp
2	Ground		24	Inp
3	12 VDC		25	Inp
4	Ground		26	Inp
5	5 VDC		27	Inp
6	Ground		28	Inp
7	3.3 VDC		29	Ou
8	Ground		30	Ou
9	Input/Output	1	31	Ou
10	Input/Output	2	32	Ou
11	Input/Output	3	33	Ou
12	Input/Output	4	34	Ou
13	Input/Output	5	35	Ou
14	Input/Output	6	36	Οι
15	Input/Output	7	37	
16	Input/Output	8	38	
17	Input/Output	9	39	
18	Input/Output	10	40	
19	Input/Output	11	41	
20	Input/Output	12	42	
21	Input/Output	13	43	
22	Input/Output	14	44	

Pin	Purpose	
23	Input/Output	15
24	Input/Output	16
25	Input/Output	17
26	Input/Output	18
27	Input/Output	19
28	Input/Output	20
29	Output 21	
30	Output 22	
31	Output 23	
32	Output 24	
33	Output 25	
34	Output 26	
35	Output 27	
36	Output 28	
37		
38		
39		
40		
41		
42		
43		
44		

Connecting the Module to the Tester

- 1. Connect your 4200 Series or Easy Touch Pro tester to your Digital IO module.
- 2. Connect the power supply to an outlet.
- 3. Press the switch to the On position. A light will indicate the module is receiving power.

Programing Digital IO Software

The Digital IO functions are written in the free Lua programming language. For more information on Lua and scripting, see the easy-wire Scripting manual.

To control the Digital IO module, Cirris has created a library of Lua functions called diomod.lua. The diomod.lua file must be copied to your working directory in order for the Lua script to have access to the diomod library. This file can be found on cirris.com or on the flash drive.

diomod.ReadUserInputStates Example

The following example illustrates commands used with Lua software to control the Digital IO module.

```
state1, state2, state3, state4 =
diomod.ReadUserInputStates(1, 2, 3, 4)
```

This function returns the state (on or off) of the digital inputs on the digital IO port. Each returned input state corresponds respectively to the specified input. The function returns a 1 if the input is on (high) or a 0 if the input is off (low).

diomod.SetUserOutputStates Example

The full format of this function is:

diomod.SetUserOutputStates(Pin1, State1, Pin2, State2, ... Pin8, State8)

The outputs are "sink" outputs. This function sets the digital outputs on (sinking) or off (floating). This function takes up to eight parameter pairs. In each pair, the first parameter specifies which output to be set. The second parameter specifies whether the output is set to on or off. If this parameter value is 0 the output is set on (sinking low); if 1, the output is set off (not conducting).

Digital IO Full Script Example

```
cmpDIO = \{\}
cmpDIO.description = "Digital IO Module Example 1"
function cmpDIO.test()
    LoadLibrary("diomod") -- Loads the diomod library
    diomod.SetUserOutputStates(11,0) -- Turns on output 11
    diomod.SetUserOutputStates(12,1) -- Turns off output 12
    return MessageBox("Test Finished")
end
-- LoadLibrary FUNCTION MUST BE PRESENT IN THE SCRIPT
function LoadLibrary(sLibrary)
    if Cirris then
       package.path = string.format("%s;%s?.lua",
       package.path,string.match(debug.getinfo(1).
source:match("@(.*)$"), "(.-)([^\\/]-
%.?([^%.\\/]*))$"))
           _G[sLibrary] = require(sLibrary)
    else
       dofile(sLibrary..".lua")
    end
end
```

If you are unfamiliar with Lua programming, Cirris can help create the scripts required to meet your Digital IO needs.

For more information on Digital IO, see the easy-wire Scripting manual. If you have any questions, contact Cirris Tech Support.

401 North 5600 West, Salt Lake City, UT 84116

801-973-4600 | www.cirris.com